bzoj1693 Asteroids(二分图最小顶点覆盖)

题目大意

n * n矩阵有K个点,第i个点的坐标为(Xi,Yi)。每次可以把某行或者某列删掉。问至少需要多少次可以把K个点都删掉。
( n500 n ≤ 500 )

题解

每一行每一列都建点,然后对于每一个坐标 (Xi.Yi) ( X i . Y i ) 都建一条从 XiYi X i 到 Y i 容量为1的边。
然后就是二分图的最小顶点覆盖了。
可以证明最小顶点覆盖=最小割=最大匹配。
所以我们可以用dinic做也可以用匈牙利算法做。
这里给出了建立超级源点和超级汇点的dinic算法。

坑点

数组记得开大。。。博主因为这个又查了很久。

code

#include<bits/stdc++.h>
using namespace std;
inline int read(){
    int num=0;char c=' ';bool flag=true;
    for(;c>'9'||c<'0';c=getchar())
        if(c=='-')
            flag=false;
    for(;c>='0'&&c<='9';num=(num<<3)+(num<<1)+c-48,c=getchar());
    return flag ? num : -num;
}
namespace graph{
    const int INF=0x7fffffff;
    const int maxn=1000;
    struct node{
        int y,val,next;
    }a[maxn*maxn];
    int head[maxn],top;
    void insert(int x,int y,int v){
        a[top].y=y;
        a[top].val=v;
        a[top].next=head[x];
        head[x]=top++;
    }
    int n,k,s,t;
    void init(){
        memset(head,-1,sizeof head);
        n=read();k=read();
        s=0;t=2*n+1;
        for(int i=1;i<=k;i++){
            int x=read();
            int y=read()+n;
            insert(x,y,1);
            insert(y,x,0);
        }
        for(int i=1;i<=n;i++){
            insert(0,i,1);
            insert(i,0,0);
            insert(i+n,t,1);
            insert(t,i+n,0);
        }
    }
}using namespace graph;
namespace max_flow{
    int vis[maxn],cur[maxn];
    bool bfs(){
        memset(vis,0,sizeof vis);
        queue<int>q;
        q.push(s);
        vis[s]=1;
        while(!q.empty()){
            int u=q.front();
            q.pop();
            for(int i=head[u];i+1;i=a[i].next){
                int v=a[i].y;
                if(vis[v]||a[i].val==0)continue;
                vis[v]=vis[u]+1;
                q.push(v);
                if(v==t)return true;
            }
        }
        return false;
    }
    int dfs(int x,int flow){
        if(x==t)return flow;
        for(int &i=cur[x];i+1;i=a[i].next){
            int y=a[i].y;
            if(vis[y]!=vis[x]+1||a[i].val==0)continue;
            int k=dfs(y,min(a[i].val,flow));
            if(k){
                a[i].val-=k;
                a[i^1].val+=k;
                return k;
            }
        }
        return 0;
    }
}using namespace max_flow;
int main(){
    init();
    int ans=0;
    while(bfs()){
        for(int i=s;i<=t;i++)
            cur[i]=head[i];
        while(int flow=dfs(s,INF))
            ans+=flow;
    }
    printf("%d\n",ans);
    return 0;
}
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页