[TJOI2019]唱、跳、rap和篮球 题解

传送门

老年退役选手来写题解了

题意

a a a个人喜欢唱, b b b个人喜欢跳, c c c个人喜欢rap, d d d个人喜欢篮球,现在要从中选出 n n n个人排成一队,使得不存在位置 k k k满足第 k k k k + 1 k+1 k+1 k + 2 k+2 k+2 k + 3 k+3 k+3个人依次喜欢唱、跳、rap、篮球,求方案数。

两种方案不同,当且仅当有一个位置上的同学的喜好不同。

题解

为了方便,我们将连续的唱跳rap篮球四个人称为“ikun段”。

现在要计算没有ikun段的方案数并不方便,可以考虑容斥,那么答案显然是

a n s = ∑ i = 0 min ⁡ { a , b , c , d , ⌊ n 4 ⌋ } ( − 1 ) i f ( i ) ans=\sum\limits_{i=0}^{\min\{a,b,c,d,\lfloor\frac{n}{4}\rfloor\}}(-1)^if(i) ans=i=0min{a,b,c,d,4n}(1)if(i)

其中 f ( i ) f(i) f(i)表示指定 i i i处ikun段,其它地方任意排列的方案数。

要指定 i i i处ikun段,注意到它们不能相交,设第 j j j处ikun段的开头位置为 a j a_j aj,显然有

a j + 3 &lt; a j + 1 a_j+3&lt;a_{j+1} aj+3<aj+1

1 ≤ a 1 , a i + 3 ≤ n 1\leq a_1,a_i+3\leq n 1a1,ai+3n

简单整理一下可以得到

1 ≤ a 1 &lt; a 2 − 3 &lt; a 3 − 6 &lt; ⋯ &lt; a j − 3 ( j − 1 ) ≤ n − 3 i 1\leq a_1&lt;a_2-3&lt;a_3-6&lt;\cdots&lt;a_j-3(j-1)\leq n-3i 1a1<a23<a36<<aj3(j1)n3i

因此方案数就是 C n − 3 i i C_{n-3i}^i Cn3ii

指定了 i i i处出现ikun段之后,剩下 n − 4 i n-4i n4i个位置任意排列,也就是从 a − i a-i ai个唱、 b − i b-i bi个跳、 c − i c-i ci个rap、 d − i d-i di个篮球中选出 n − 4 i n-4i n4i个来排列。这是经典的指数型生成函数问题,答案就是 h ( x ) h(x) h(x)的项 x n − 4 i x^{n-4i} xn4i的系数乘上 ( n − 4 i ) ! (n-4i)! (n4i)!,其中

h ( x ) = ( ∑ j = 0 a − i x j j ! ) ( ∑ j = 0 b − i x j j ! ) ( ∑ j = 0 c − i x j j ! ) ( ∑ j = 0 d − i x j j ! ) h(x)=\left(\sum\limits_{j=0}^{a-i}\frac{x^j}{j!}\right)\left(\sum\limits_{j=0}^{b-i}\frac{x^j}{j!}\right)\left(\sum\limits_{j=0}^{c-i}\frac{x^j}{j!}\right)\left(\sum\limits_{j=0}^{d-i}\frac{x^j}{j!}\right) h(x)=(j=0aij!xj)(j=0bij!xj)(j=0cij!xj)(j=0dij!xj)

NTT求卷积即可。

总结一下,我们要求的东西就是

a n s = ∑ i = 0 min ⁡ { a , b , c , d , ⌊ n 4 ⌋ } ( − 1 ) i C n − 3 i i ( n − 4 i ) ! [ x n − 4 i ] h ( x ) ans=\sum\limits_{i=0}^{\min\{a,b,c,d,\lfloor\frac{n}{4}\rfloor\}}(-1)^iC_{n-3i}^i(n-4i)![x^{n-4i}]h(x) ans=i=0min{a,b,c,d,4n}(1)iCn3ii(n4i)![xn4i]h(x)

组合数的分母也含有 ( n − 4 i ) ! (n-4i)! (n4i)!,可以约去,但这其实无所谓。

枚举 i i i,求卷积 O ( n log ⁡ n ) O(n\log n) O(nlogn),总复杂度 O ( n 2 log ⁡ n ) O(n^2\log n) O(n2logn)

我怀疑这题暴力求卷积+卡常优化可以比NTT快

#include <cctype>
#include <cstdio>
#include <climits>
#include <algorithm>

template <typename T> inline void read(T &x) {
    int f = 0, c = getchar(); x = 0;
    while (!isdigit(c)) f |= c == '-', c = getchar();
    while (isdigit(c)) x = x * 10 + c - 48, c = getchar();
    if (f) x = -x;
}
template <typename T, typename... Args>
inline void read(T &x, Args&... args) {
    read(x); read(args...);
}
template <typename T> void write(T x) {
    if (x < 0) x = -x, putchar('-');
    if (x > 9) write(x / 10);
    putchar(x % 10 + 48);
}
template <typename T> inline void writeln(T x) { write(x); puts(""); }
template <typename T> inline bool chkmin(T &x, const T &y) { return y < x ? x = y, 1 : 0; }
template <typename T> inline bool chkmax(T &x, const T &y) { return x < y ? x = y, 1 : 0; }

typedef long long LL;

const int maxn = 1e3 + 7;
const LL P = 998244353, G = 3, Gi = 332748118;

inline LL qpow(LL x, LL k) {
    LL s = 1;
    for (; k; x = x * x % P, k >>= 1)
        if (k & 1) s = s * x % P;
    return s;
}

inline void ntt(LL *A, int *r, int lim, int tp) {
    for (int i = 0; i < lim; ++i)
        if (i < r[i]) std::swap(A[i], A[r[i]]);
    for (int mid = 1; mid < lim; mid <<= 1) {
        LL wn = qpow(tp == 1 ? G : Gi, (P - 1) / (mid << 1));
        for (int j = 0; j < lim; j += mid << 1) {
            LL w = 1;
            for (int k = 0; k < mid; ++k, w = w * wn % P) {
                LL x = A[j + k], y = w * A[j + k + mid] % P;
                A[j + k] = (x + y) % P;
                A[j + k + mid] = (x - y + P) % P;
            }
        }
    }
    if (tp == -1) {
        LL inv = qpow(lim, P - 2);
        for (int i = 0; i < lim; ++i)
            A[i] = A[i] * inv % P;
    }
}

int a, b, c, d, n, mn, mx;
LL fac[maxn], ifac[maxn];
LL ha[maxn << 3], hb[maxn << 3], hc[maxn << 3], hd[maxn << 3];
int r[maxn << 3];

inline LL g(int i) {
    std::copy(ifac, ifac + a - i + 1, ha);
    std::copy(ifac, ifac + b - i + 1, hb);
    std::copy(ifac, ifac + c - i + 1, hc);
    std::copy(ifac, ifac + d - i + 1, hd);
    int lim = 1, l = 0;
    while (lim <= a + b + c + d - 4 * i) lim <<= 1, ++l;
    for (int j = 0; j < lim; ++j)
        r[j] = (r[j >> 1] >> 1) | ((j & 1) << (l - 1));
    ntt(ha, r, lim, 1);
    ntt(hb, r, lim, 1);
    ntt(hc, r, lim, 1);
    ntt(hd, r, lim, 1);
    for (int j = 0; j < lim; ++j)
        ha[j] = ha[j] * hb[j] % P * hc[j] % P * hd[j] % P;
    ntt(ha, r, lim, -1);
    LL ret = ha[n - 4 * i];
    std::fill(ha, ha + lim, 0);
    std::fill(hb, hb + lim, 0);
    std::fill(hc, hc + lim, 0);
    std::fill(hd, hd + lim, 0);
    return ret;
}

int main() {
    read(n, a, b, c, d);
    mn = std::min({a, b, c, d, n / 4});
    mx = std::max({a, b, c, d, n});
    fac[0] = ifac[0] = 1;
    for (int i = 1; i <= mx; ++i)
        fac[i] = fac[i - 1] * i % P;
    ifac[mx] = qpow(fac[mx], P - 2);
    for (int i = mx - 1; i; --i)
        ifac[i] = ifac[i + 1] * (i + 1) % P;
    LL ans = 0;
    for (int i = 0; i <= mn; ++i) {
        LL sgn = i & 1 ? P - 1 : 1;
        LL res = sgn * fac[n - 3 * i] % P * ifac[i] % P * g(i) % P;
        ans = (ans + res) % P;
    }
    writeln((ans % P + P) % P);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值