为了求正切的麦克劳林展开式,我复习了伯努利数

这是一篇随笔。前段时间数分课讲到了Taylor公式,做题的时候常常会用到 sin ⁡ x , cos ⁡ x \sin x,\cos x sinx,cosx等函数的Taylor展开式。我们容易写出 sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx n n n阶麦克劳林展开式,但是 tan ⁡ x \tan x tanx的麦克劳林展开式比较复杂,于是我翻开《具体数学》重新学习了一下跟伯努利数有关的内容,并做一些简单的整理。


首先给出伯努利数的定义。伯努利数 B n B_n Bn是由如下递归式定义的数:
∑ j = 0 m ( m + 1 j ) B j = [ m = 0 ] , m ∈ N . \sum\limits_{j=0}^m\binom{m+1}jB_j=[m=0],m\in\N. j=0m(jm+1)Bj=[m=0],mN.
特别地,令 m = 0 m=0 m=0可以得到 B 0 = 1 B_0=1 B0=1

对这个递归式稍加改造,我们就得到了形式更整齐的
∑ k = 0 n ( n k ) B k = B n + [ n = 1 ] , n ∈ N . (1) \sum\limits_{k=0}^n\binom n kB_k=B_n+[n=1],n\in\N.\tag1 k=0n(kn)Bk=Bn+[n=1],nN.(1)
假设 B ( z ) = ∑ n ⩾ 0 B n z n n ! \mathscr B(z)=\sum\limits_{n\geqslant0}B_n\dfrac{z^n}{n!} B(z)=n0Bnn!zn是伯努利数的指数生成函数,因为
e z = ∑ n ⩾ 0 z n n ! , e^z=\sum\limits_{n\geqslant0}\dfrac{z^n}{n!}, ez=n0n!zn,
所以它与 B ( z ) \mathscr B(z) B(z)的卷积是
e z B ( z ) = ∑ n ⩾ 0 ∑ 0 ⩽ k ⩽ n B k n ! k ! ( n − k ) ! z n n ! = ∑ n ⩾ 0 ( ∑ k = 0 n ( n k ) B k ) z n n ! , e^z\mathscr B(z)=\sum\limits_{n\geqslant0}\sum\limits_{0\leqslant k\leqslant n}\dfrac{B_kn!}{k!(n-k)!}\dfrac{z^n}{n!}=\sum\limits_{n\geqslant 0}\left(\sum\limits_{k=0}^n\binom n kB_k\right)\dfrac{z^n}{n!}, ezB(z)=n00knk!(nk)!Bkn!n!zn=n0(k=0n(kn)Bk)n!zn,
1 1 1式的右边 B n + [ n = 1 ] B_n+[n=1] Bn+[n=1]的指数生成函数是 B ( z ) + z \mathscr B(z)+z B(z)+z,所以我们得到了
B ( z ) = z e z − 1 . \mathscr B(z)=\dfrac{z}{e^z-1}. B(z)=ez1z.
注意到双曲函数 sinh ⁡ z = e z − e − z 2 , cosh ⁡ = e z + e − z 2 \sinh z=\dfrac{e^z-e^{-z}}{2},\cosh=\dfrac{e^z+e^{-z}}2 sinhz=2ezez,cosh=2ez+ez,则双曲余切函数 coth ⁡ z = e z + e − z e z − e − z \coth z=\dfrac{e^z+e^{-z}}{e^z-e^{-z}} cothz=ezezez+ez,那么
z 2 coth ⁡ z 2 = z 2 e z / 2 + e − z / 2 e z / 2 − e − z / 2 = z 2 e z + 1 e z − 1 = z e z − 1 + z 2 . \dfrac{z}{2}\coth\dfrac z 2=\dfrac z 2\dfrac{e^{z/2}+e^{-z/2}}{e^{z/2}-e^{-z/2}}=\dfrac z 2\dfrac{e^z+1}{e^z-1}=\dfrac z{e^z-1}+\dfrac z 2. 2zcoth2z=2zez/2ez/2ez/2+ez/2=2zez1ez+1=ez1z+2z.
又注意到 B 1 = − 1 2 B_1=-\dfrac12 B1=21,所以 z e z − 1 + z 2 = ∑ n ⩾ 0 , n ≠ 1 B n z n n ! \dfrac{z}{e^z-1}+\dfrac z2=\sum\limits_{n\geqslant 0,n\neq1}B_n\dfrac{z^n}{n!} ez1z+2z=n0,n=1Bnn!zn。又因为 z 2 coth ⁡ z 2 \dfrac z2\coth\dfrac z2 2zcoth2z是奇函数,所以对所有大于 1 1 1的奇数 n n n都有 B n = 0 B_n=0 Bn=0,于是 z e z − 1 + z 2 = ∑ n ⩾ 0 , n ≠ 1 B n z n n ! \dfrac{z}{e^z-1}+\dfrac z 2=\sum\limits_{n\geqslant0,n\neq1}B_n\dfrac{z^n}{n!} ez1z+2z=n0,n=1Bnn!zn中就只包含 n n n为偶数的项,我们可以把它写成
z 2 coth ⁡ z 2 = ∑ n ⩾ 0 B 2 n z 2 n ( 2 n ) ! , \dfrac z2\coth\dfrac z2=\sum\limits_{n\geqslant0}B_{2n}\dfrac{z^{2n}}{(2n)!}, 2zcoth2z=n0B2n(2n)!z2n,
2 z 2z 2z替换 z z z就有
z coth ⁡ z = ∑ n ⩾ 0 B 2 n 4 n z 2 n ( 2 n ) ! . z\coth z=\sum\limits_{n\geqslant 0}B_{2n}\dfrac{4^nz^{2n}}{(2n)!}. zcothz=n0B2n(2n)!4nz2n.
注意,这里的所有 z z z都是复数,而三角函数与双曲函数满足如下关系
sin ⁡ z = − i sinh ⁡ i z , cos ⁡ z = cosh ⁡ i z , cot ⁡ z = i coth ⁡ i z , \sin z=-i\sinh iz,\cos z=\cosh iz,\cot z=i\coth iz, sinz=isinhiz,cosz=coshiz,cotz=icothiz,
于是我们有
cot ⁡ z = i z coth ⁡ i z = ∑ n ⩾ 0 B 2 n ( − 4 ) n z 2 n − 1 ( 2 n ) ! . \cot z=iz\coth iz=\sum\limits_{n\geqslant 0}B_{2n}\dfrac{(-4)^nz^{2n-1}}{(2n)!}. cotz=izcothiz=n0B2n(2n)!(4)nz2n1.
注意, n = 0 n=0 n=0时的求和项 B 2 n ( − 4 ) n z 2 n − 1 ( 2 n ) ! = 1 z B_{2n}\dfrac{(-4)^nz^{2n-1}}{(2n)!}=\dfrac1z B2n(2n)!(4)nz2n1=z1不是 z z z的非负整数次幂,所以上式并不是关于 z z z的多项式。这是合理的,因为 cot ⁡ z \cot z cotz z = 0 z=0 z=0处是发散到无穷大的,它不能在这一点处作麦克劳林展开。

cot ⁡ z \cot z cotz过渡到 tan ⁡ z \tan z tanz是非常容易的,我们并不需要做多项式除法,只要用
tan ⁡ z = cot ⁡ z − 2 cot ⁡ 2 z \tan z=\cot z-2\cot 2z tanz=cotz2cot2z
即可得出
tan ⁡ z = ∑ n ⩾ 0 ( − 1 ) n − 1 4 n ( 4 n − 1 ) B 2 n z 2 n − 1 ( 2 n ) ! . \tan z=\sum\limits_{n\geqslant 0}(-1)^{n-1}4^n(4^n-1)B_{2n}\dfrac{z^{2n-1}}{(2n)!}. tanz=n0(1)n14n(4n1)B2n(2n)!z2n1.
这是一个关于 z z z的多项式。虽然 n = 0 n=0 n=0 z 2 n − 1 = 1 z z^{2n-1}=\dfrac1z z2n1=z1,但这一项的系数含有 4 n − 1 = 0 4^n-1=0 4n1=0,因此它没有影响。

趁热打铁,做两个练习(《具体数学》习题6.72):求 z sin ⁡ z \dfrac{z}{\sin z} sinzz ln ⁡ tan ⁡ z z \ln\dfrac{\tan z}z lnztanz的形式幂级数。

注意到 1 sin ⁡ z + cos ⁡ z sin ⁡ z = 1 + cos ⁡ z sin ⁡ z = cot ⁡ z 2 \dfrac{1}{\sin z}+\dfrac{\cos z}{\sin z}=\dfrac{1+\cos z}{\sin z}=\cot\dfrac z2 sinz1+sinzcosz=sinz1+cosz=cot2z,所以
z sin ⁡ z = 2 ⋅ z 2 cot ⁡ z 2 − z cot ⁡ z = ∑ n ⩾ 0 ( − 1 ) n ( 2 − 4 n ) B 2 n z 2 n ( 2 n ) ! . \dfrac{z}{\sin z}=2\cdot\dfrac z2\cot\dfrac z2-z\cot z=\sum\limits_{n\geqslant0}(-1)^n(2-4^n)B_{2n}\dfrac{z^{2n}}{(2n)!}. sinzz=22zcot2zzcotz=n0(1)n(24n)B2n(2n)!z2n.
ln ⁡ tan ⁡ z z \ln\dfrac{\tan z}z lnztanz可能有些棘手,但是注意到
2 sin ⁡ 2 z − 1 z = ∑ n ⩾ 1 ( − 4 ) n ( 2 − 4 n ) B 2 n z 2 n − 1 ( 2 n ) ! , \begin{aligned} \dfrac{2}{\sin 2z}-\dfrac1z=\sum\limits_{n\geqslant 1}(-4)^n(2-4^n)B_{2n}\dfrac{z^{2n-1}}{(2n)!}, \end{aligned} sin2z2z1=n1(4)n(24n)B2n(2n)!z2n1,
两边关于 z z z取不定积分有
ln ⁡ tan ⁡ z z + C = ∑ n ⩾ 1 ( − 4 ) n ( 2 − 4 n ) B 2 n 2 n z 2 n ( 2 n ) ! , \ln\dfrac{\tan z}z+C=\sum\limits_{n\geqslant 1}(-4)^n(2-4^n)\dfrac{B_{2n}}{2n}\dfrac{z^{2n}}{(2n)!}, lnztanz+C=n1(4)n(24n)2nB2n(2n)!z2n,
注意到 z = 0 z=0 z=0 ln ⁡ tan ⁡ z z = 0 \ln\dfrac{\tan z}z=0 lnztanz=0,所以 C = 0 C=0 C=0。因此我们得到了
ln ⁡ tan ⁡ z z = ∑ n ⩾ 1 ( − 4 ) n ( 2 − 4 n ) B 2 n 2 n ⋅ z 2 n ( 2 n ) ! . \ln\dfrac{\tan z}z=\sum\limits_{n\geqslant1}(-4)^n(2-4^n)\dfrac{B_{2n}}{2n}\cdot\dfrac{z^{2n}}{(2n)!}. lnztanz=n1(4)n(24n)2nB2n(2n)!z2n.
关于伯努利数,它最初是由伯努利在自然数的幂之和的式子中发现的,即
S m ( n ) = ∑ k = 0 n − 1 k m = 1 m + 1 ∑ k = 0 m ( m + 1 k ) B k n m + 1 − k , m ∈ N . (2) S_m(n)=\sum\limits_{k=0}^{n-1}k^m=\dfrac{1}{m+1}\sum\limits_{k=0}^m\binom{m+1}{k}B_kn^{m+1-k},m\in\N.\tag{2} Sm(n)=k=0n1km=m+11k=0m(km+1)Bknm+1k,mN.(2)
也就是说, S m ( n ) S_m(n) Sm(n)总是关于 n n n m + 1 m+1 m+1次多项式,而这个多项式系数与伯努利数有关。这个结论可以利用数学归纳法证明。

**证 **首先, S 0 ( n ) = n , 1 0 + 1 ( 1 0 ) B 0 n 0 + 1 − 0 = n S_0(n)=n,\dfrac{1}{0+1}\dbinom{1}{0}B_0n^{0+1-0}=n S0(n)=n,0+11(01)B0n0+10=n,这时 2 2 2式成立。

现假设对所有 0 ⩽ j < m 0\leqslant j<m 0j<m,都有
S j ( n ) = 1 j + 1 ∑ k = 0 j ( j + 1 k ) B k n j + 1 − k , S_j(n)=\dfrac{1}{j+1}\sum\limits_{k=0}^j\binom{j+1}{k}B_kn^{j+1-k}, Sj(n)=j+11k=0j(kj+1)Bknj+1k,
考虑求出 S m ( n ) S_m(n) Sm(n)。为此,我们使用扰动法:
S m + 1 ( n ) + n m + 1 = ∑ k = 0 n k m + 1 = ∑ k = 0 n − 1 ( k + 1 ) m + 1 = ∑ k = 0 n − 1 ∑ j = 0 m + 1 ( m + 1 j ) k j = ∑ j = 0 m + 1 ( m + 1 j ) ∑ k = 0 n − 1 k j = ∑ j = 0 m + 1 ( m + 1 j ) S j ( n ) . \begin{aligned} S_{m+1}(n)+n^{m+1} &=\sum\limits_{k=0}^nk^{m+1}\\ &=\sum\limits_{k=0}^{n-1}(k+1)^{m+1}\\ &=\sum\limits_{k=0}^{n-1}\sum\limits_{j=0}^{m+1}\binom{m+1}{j}k^j\\ &=\sum\limits_{j=0}^{m+1}\binom{m+1}{j}\sum\limits_{k=0}^{n-1}k^j\\ &=\sum\limits_{j=0}^{m+1}\binom{m+1}{j}S_j(n). \end{aligned} Sm+1(n)+nm+1=k=0nkm+1=k=0n1(k+1)m+1=k=0n1j=0m+1(jm+1)kj=j=0m+1(jm+1)k=0n1kj=j=0m+1(jm+1)Sj(n).
两边消去 S m + 1 ( n ) S_{m+1}(n) Sm+1(n)
n m + 1 = ∑ j = 0 m ( m + 1 j ) S j ( n ) , n^{m+1}=\sum\limits_{j=0}^m\binom{m+1}{j}S_j(n), nm+1=j=0m(jm+1)Sj(n),
于是
( m + 1 ) S m ( n ) = n m + 1 − ∑ j = 0 m − 1 ( m + 1 j ) 1 j + 1 ∑ k = 0 j ( j + 1 k ) B k n j + 1 − k = n m + 1 − ∑ j = 0 m − 1 ( m + 1 j ) 1 j + 1 ∑ k = 0 j ( j + 1 k + 1 ) B j − k n k + 1 = n m + 1 − ∑ k = 0 m − 1 n k + 1 ∑ j = k m − 1 1 j + 1 ( m + 1 j ) ( j + 1 k + 1 ) B j − k = n m + 1 − ∑ k = 0 m − 1 n k + 1 ∑ j = 0 m − 1 − k 1 j + k + 1 ( m + 1 j + k ) ( j + k + 1 k + 1 ) B j = n m + 1 − ∑ k = 0 m − 1 n k + 1 ∑ j = 0 m − 1 − l 1 k + 1 ( m + 1 j + k ) ( j + k k ) B j = n m + 1 − ∑ k = 0 m − 1 n k + 1 k + 1 ∑ j = 0 m − 1 − k ( m + 1 k ) ( m + 1 − k j ) B j = n m + 1 − ∑ k = 0 m − 1 n k + 1 k + 1 ( m + 1 k ) ∑ j = 0 m − 1 − k ( m + 1 − k j ) B j \begin{aligned} (m+1)S_m(n) &=n^{m+1}-\sum\limits_{j=0}^{m-1}\binom{m+1}{j}\dfrac{1}{j+1}\sum\limits_{k=0}^j\binom{j+1}{k}B_kn^{j+1-k}\\ &=n^{m+1}-\sum\limits_{j=0}^{m-1}\binom{m+1}{j}\dfrac{1}{j+1}\sum\limits_{k=0}^j\binom{j+1}{k+1}B_{j-k}n^{k+1}\\ &=n^{m+1}-\sum\limits_{k=0}^{m-1}n^{k+1}\sum\limits_{j=k}^{m-1}\dfrac{1}{j+1}\binom{m+1}{j}\binom{j+1}{k+1}B_{j-k}\\ &=n^{m+1}-\sum\limits_{k=0}^{m-1}n^{k+1}\sum\limits_{j=0}^{m-1-k}\dfrac{1}{j+k+1}\binom{m+1}{j+k}\binom{j+k+1}{k+1}B_j\\ &=n^{m+1}-\sum\limits_{k=0}^{m-1}n^{k+1}\sum\limits_{j=0}^{m-1-l}\dfrac{1}{k+1}\binom{m+1}{j+k}\binom{j+k}{k}B_j\\ &=n^{m+1}-\sum\limits_{k=0}^{m-1}\dfrac{n^{k+1}}{k+1}\sum\limits_{j=0}^{m-1-k}\binom{m+1}{k}\binom{m+1-k}{j}B_j\\ &=n^{m+1}-\sum\limits_{k=0}^{m-1}\dfrac{n^{k+1}}{k+1}\binom{m+1}{k}\sum\limits_{j=0}^{m-1-k}\binom{m+1-k}jB_j \end{aligned} (m+1)Sm(n)=nm+1j=0m1(jm+1)j+11k=0j(kj+1)Bknj+1k=nm+1j=0m1(jm+1)j+11k=0j(k+1j+1)Bjknk+1=nm+1k=0m1nk+1j=km1j+11(jm+1)(k+1j+1)Bjk=nm+1k=0m1nk+1j=0m1kj+k+11(j+km+1)(k+1j+k+1)Bj=nm+1k=0m1nk+1j=0m1lk+11(j+km+1)(kj+k)Bj=nm+1k=0m1k+1nk+1j=0m1k(km+1)(jm+1k)Bj=nm+1k=0m1k+1nk+1(km+1)j=0m1k(jm+1k)Bj
因为这里的 k < m k<m k<m,那么
∑ j = 0 m − k ( m + 1 − k j ) B j = [ m = k ] = 0 , \sum\limits_{j=0}^{m-k}\binom{m+1-k}jB_j=[m=k]=0, j=0mk(jm+1k)Bj=[m=k]=0,
所以
∑ j = 0 m − 1 − k ( m + 1 − k j ) B j = − ( m + 1 − k ) B m − k , \sum\limits_{j=0}^{m-1-k}\binom{m+1-k}jB_j=-(m+1-k)B_{m-k}, j=0m1k(jm+1k)Bj=(m+1k)Bmk,
那么
( m + 1 ) S m ( n ) = n m + 1 + ∑ k = 0 m − 1 n k + 1 k + 1 ( m + 1 k ) ( m + 1 − k ) B m − k = ∑ k = 0 m n k + 1 k + 1 ( m + 1 k ) ( m + 1 − k ) B m − k ⇒ S m ( n ) = 1 m + 1 ∑ k = 0 m ( m + 1 k ) B k n m − k + 1 . \begin{aligned} (m+1)S_m(n) &=n^{m+1}+\sum\limits_{k=0}^{m-1}\dfrac{n^{k+1}}{k+1}\binom{m+1}{k}(m+1-k)B_{m-k}\\ &=\sum\limits_{k=0}^m\dfrac{n^{k+1}}{k+1}\binom{m+1}{k}(m+1-k)B_{m-k}\\ \Rightarrow S_m(n)&=\dfrac{1}{m+1}\sum\limits_{k=0}^m\binom{m+1}{k}B_kn^{m-k+1}. \end{aligned} (m+1)Sm(n)Sm(n)=nm+1+k=0m1k+1nk+1(km+1)(m+1k)Bmk=k=0mk+1nk+1(km+1)(m+1k)Bmk=m+11k=0m(km+1)Bknmk+1.
由第二数学归纳法, 2 2 2式对任意自然数 m m m成立。 □ \Box

伯努利数还有其他应用,其中尤为重要的一个是它可以帮我们求出偶数阶调和数。首先有
z cot ⁡ z = 1 − 2 ∑ k ⩾ 1 z 2 k 2 π 2 − z 2 . (3) z\cot z=1-2\sum\limits_{k\geqslant 1}\dfrac{z^2}{k^2\pi^2-z^2}.\tag3 zcotz=12k1k2π2z2z2.(3)
这个式子的证明放到后面。现在将 z 2 k 2 π 2 − z 2 = z 2 k 2 π 2 1 − z 2 k 2 π 2 = − 1 + 1 1 − z 2 k 2 π 2 \dfrac{z^2}{k^2\pi^2-z^2}=\dfrac{\frac{z^2}{k^2\pi^2}}{1-\frac{z^2}{k^2\pi^2}}=-1+\dfrac{1}{1-\frac{z^2}{k^2\pi^2}} k2π2z2z2=1k2π2z2k2π2z2=1+1k2π2z21展开为形式幂级数,有
z 2 k 2 π 2 − z 2 = ∑ n ⩾ 1 ( z 2 k 2 π 2 ) n , \dfrac{z^2}{k^2\pi^2-z^2}=\sum\limits_{n\geqslant1}\left(\dfrac{z^2}{k^2\pi^2}\right)^n, k2π2z2z2=n1(k2π2z2)n,
于是
z cot ⁡ z = 1 − 2 ∑ k ⩾ 1 ∑ n ⩾ 1 z 2 n π 2 n ⋅ 1 k 2 n = 1 − 2 ∑ n ⩾ 1 z 2 n π 2 n ∑ k ⩾ 1 1 k 2 n = 1 − 2 ∑ n ⩾ 1 z 2 n π 2 n H ∞ ( 2 n ) . z\cot z=1-2\sum\limits_{k\geqslant 1}\sum\limits_{n\geqslant 1}\dfrac{z^{2n}}{\pi^{2n}}\cdot\dfrac{1}{k^{2n}}=1-2\sum\limits_{n\geqslant 1}\dfrac{z^{2n}}{\pi^{2n}}\sum\limits_{k\geqslant 1}\dfrac{1}{k^{2n}}=1-2\sum\limits_{n\geqslant 1}\dfrac{z^{2n}}{\pi^{2n}}H_\infty^{(2n)}. zcotz=12k1n1π2nz2nk2n1=12n1π2nz2nk1k2n1=12n1π2nz2nH(2n).
又因为
z cot ⁡ z = ∑ n ⩾ 0 ( − 4 ) n B 2 n z 2 n ( 2 n ) ! , z\cot z=\sum\limits_{n\geqslant 0}(-4)^nB_{2n}\dfrac{z^{2n}}{(2n)!}, zcotz=n0(4)nB2n(2n)!z2n,
取含有 z 2 n z^{2n} z2n的项的系数,就得到
H ∞ ( 2 n ) = ( − 1 ) n − 1 2 2 n − 1 B 2 n π 2 n ( 2 n ) ! . H_\infty^{(2n)}=\dfrac{(-1)^{n-1}2^{2n-1}B_{2n}\pi^{2n}}{(2n)!}. H(2n)=(2n)!(1)n122n1B2nπ2n.
例如我们熟知的
H ∞ ( 2 ) = ∑ n ⩾ 1 1 n 2 = π 2 6 , H ∞ ( 4 ) = ∑ n ⩾ 1 1 n 4 = π 4 90 H_\infty^{(2)}=\sum\limits_{n\geqslant 1}\dfrac{1}{n^2}=\dfrac{\pi^2}{6},\\ H_\infty^{(4)}=\sum\limits_{n\geqslant 1}\dfrac{1}{n^4}=\dfrac{\pi^4}{90} H(2)=n1n21=6π2,H(4)=n1n41=90π4
等等。(Rmk:这里的 H ∞ ( 2 n ) H_\infty^{(2n)} H(2n)也可以记作黎曼 ζ \zeta ζ函数的形式: ζ ( 2 n ) \zeta(2n) ζ(2n)

这里补上 3 3 3式的证明。这个式子的证明来源于《具体数学》的习题6.73,首先证明
z cot ⁡ z = z 2 n − 1 cot ⁡ z 2 n − 1 + ∑ k = 1 2 n − 1 − 1 z 2 n ( cot ⁡ z + k π 2 n + cot ⁡ z − k π 2 n ) . (4) z\cot z=\dfrac{z}{2^{n-1}}\cot\dfrac{z}{2^{n-1}}+\sum\limits_{k=1}^{2^{n-1}-1}\dfrac{z}{2^n}\left(\cot\dfrac{z+k\pi}{2^n}+\cot\dfrac{z-k\pi}{2^n}\right).\tag4 zcotz=2n1zcot2n1z+k=12n112nz(cot2nz+kπ+cot2nzkπ).(4)
我们有
z 2 n − 1 cot ⁡ z 2 n − 1 + ∑ k = 1 2 n − 1 − 1 z 2 n ( cot ⁡ z + k π 2 n + cot ⁡ z − k π 2 n ) = z 2 n − 1 cot ⁡ z 2 n − 1 + z 2 n ( ∑ k = 1 2 n − 1 − 1 cot ⁡ z + k π 2 n + ∑ k = 1 2 n − 1 − 1 cot ⁡ z − ( 2 n − 1 − k ) π 2 n ) = z 2 n − 1 cot ⁡ z 2 n − 1 + z 2 n ( ∑ k = 1 2 n − 1 − 1 cot ⁡ z + k π 2 n − ∑ k = 1 2 n − 1 − 1 tan ⁡ z + k π 2 n ) = z 2 n − 1 cot ⁡ z 2 n − 1 + z 2 n − 1 ∑ k = 1 2 n − 1 − 1 cot ⁡ z + k π 2 n − 1 = z 2 n − 1 ∑ k = 1 2 n − 1 − 1 cot ⁡ z + k π 2 n − 1 \begin{aligned} &\dfrac{z}{2^{n-1}}\cot\dfrac{z}{2^{n-1}}+\sum\limits_{k=1}^{2^{n-1}-1}\dfrac{z}{2^n}\left(\cot\dfrac{z+k\pi}{2^n}+\cot\dfrac{z-k\pi}{2^n}\right)\\ &=\dfrac{z}{2^{n-1}}\cot\dfrac{z}{2^{n-1}}+\dfrac{z}{2^n}\left(\sum\limits_{k=1}^{2^{n-1}-1}\cot\dfrac{z+k\pi}{2^n}+\sum\limits_{k=1}^{2^{n-1}-1}\cot\dfrac{z-(2^{n-1}-k)\pi}{2^n}\right)\\ &=\dfrac{z}{2^{n-1}}\cot\dfrac{z}{2^{n-1}}+\dfrac{z}{2^n}\left(\sum\limits_{k=1}^{2^{n-1}-1}\cot\dfrac{z+k\pi}{2^n}-\sum\limits_{k=1}^{2^{n-1}-1}\tan\dfrac{z+k\pi}{2^n}\right)\\ &=\dfrac{z}{2^{n-1}}\cot\dfrac{z}{2^{n-1}}+\dfrac{z}{2^{n-1}}\sum\limits_{k=1}^{2^{n-1}-1}\cot\dfrac{z+k\pi}{2^{n-1}}\\ &=\dfrac{z}{2^{n-1}}\sum\limits_{k=1}^{2^{n-1}-1}\cot\dfrac{z+k\pi}{2^{n-1}} \end{aligned} 2n1zcot2n1z+k=12n112nz(cot2nz+kπ+cot2nzkπ)=2n1zcot2n1z+2nzk=12n11cot2nz+kπ+k=12n11cot2nz(2n1k)π=2n1zcot2n1z+2nzk=12n11cot2nz+kπk=12n11tan2nz+kπ=2n1zcot2n1z+2n1zk=12n11cot2n1z+kπ=2n1zk=12n11cot2n1z+kπ
再利用数学归纳法(略)即可证明上式等于 z cot ⁡ z z\cot z zcotz

下面对 4 4 4式中的第 k k k个求和项取 n → ∞ n\to\infty n时的极限,有
lim ⁡ n → ∞ z 2 n ( cot ⁡ z + k π 2 n + cot ⁡ z − k π 2 n ) = lim ⁡ n → ∞ z 2 n sin ⁡ z 2 n − 1 sin ⁡ z + k π 2 n sin ⁡ z − k π 2 n = lim ⁡ n → ∞ z 2 n z 2 n − 1 z + k π 2 n z − k π 2 n = 2 z 2 z 2 − k 2 π 2 \begin{aligned} &\lim\limits_{n\to\infty}\dfrac{z}{2^n}\left(\cot\dfrac{z+k\pi}{2^n}+\cot\dfrac{z-k\pi}{2^n}\right)\\ &=\lim\limits_{n\to\infty}\dfrac{z}{2^n}\dfrac{\sin\frac{z}{2^{n-1}}}{\sin\frac{z+k\pi}{2^n}\sin\frac{z-k\pi}{2^n}}\\ &=\lim\limits_{n\to\infty}\dfrac{z}{2^n}\dfrac{\frac{z}{2^{n-1}}}{\frac{z+k\pi}{2^n}\frac{z-k\pi}{2^n}}\\ &=\dfrac{2z^2}{z^2-k^2\pi^2} \end{aligned} nlim2nz(cot2nz+kπ+cot2nzkπ)=nlim2nzsin2nz+kπsin2nzkπsin2n1z=nlim2nz2nz+kπ2nzkπ2n1z=z2k2π22z2
又因为 lim ⁡ n → ∞ z 2 n − 1 cot ⁡ z 2 n − 1 = 1 \lim\limits_{n\to\infty}\dfrac{z}{2^{n-1}}\cot\dfrac{z}{2^{n-1}}=1 nlim2n1zcot2n1z=1,所以
z cot ⁡ z = 1 − 2 ∑ k ⩾ 1 z 2 k 2 π 2 − z 2 . □ z\cot z=1-2\sum\limits_{k\geqslant 1}\dfrac{z^2}{k^2\pi^2-z^2}.\Box zcotz=12k1k2π2z2z2.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值