分部求和法简介

分部求和法

首先我们知道
d d x ( u ( x ) v ( x ) ) = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) \cfrac{\mathrm{d}}{\mathrm{d}x}(u(x)v(x))=u'(x)v(x)+u(x)v'(x) dxd(u(x)v(x))=u(x)v(x)+u(x)v(x)

d ( u ( x ) v ( x ) ) = u ′ ( x ) v ( x ) d x + u ( x ) v ′ ( x ) d x \mathrm d(u(x)v(x))=u'(x)v(x)\mathrm{d}x+u(x)v'(x)\mathrm{d}x d(u(x)v(x))=u(x)v(x)dx+u(x)v(x)dx

∫ d ( u ( x ) v ( x ) ) = ∫ u ′ ( x ) v ( x ) d x + ∫ u ( x ) v ′ ( x ) d x \int\mathrm d(u(x)v(x))=\int u'(x)v(x)\mathrm dx+\int u(x)v'(x)\mathrm dx d(u(x)v(x))=u(x)v(x)dx+u(x)v(x)dx

移项并注意到 ∫ d ( u ( x ) v ( x ) ) = u ( x ) v ( x ) \int \mathrm d(u(x)v(x))=u(x)v(x) d(u(x)v(x))=u(x)v(x)
∫ u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) − ∫ u ′ ( x ) v ( x ) d x \int u(x)v'(x)\mathrm dx=u(x)v(x)-\int u'(x)v(x)\mathrm dx u(x)v(x)dx=u(x)v(x)u(x)v(x)dx
这启示我们:在求解积分 ∫ f ( x ) d x \int f(x)\mathrm dx f(x)dx时,如果能找到合适的 u ( x ) , v ( x ) u(x),v(x) u(x),v(x),使得被积函数 f ( x ) f(x) f(x)可以表示为 u ( x ) v ′ ( x ) u(x)v'(x) u(x)v(x)的形式,并且 u ( x ) v ( x ) u(x)v(x) u(x)v(x) ∫ u ′ ( x ) v ( x ) d x \int u'(x)v(x)\mathrm dx u(x)v(x)dx比较好求,就可以用后两项相减求得 f ( x ) f(x) f(x)的积分。

这个式子可以简单地写作
∫ u d v = u v − ∫ v d u \int u\mathrm dv=uv-\int v\mathrm du udv=uvvdu
它称为分部积分法

举个栗子:求 ∫ x cos ⁡ x d x \int x\cos x\mathrm dx xcosxdx

解:设 u = x , d v = cos ⁡ x d x u=x,\mathrm dv=\cos x\mathrm dx u=x,dv=cosxdx,那么 v = sin ⁡ x , d u = d x v=\sin x,\mathrm du=\mathrm dx v=sinx,du=dx

∫ x cos ⁡ x d x = ∫ u d v = u v − ∫ v d u = x sin ⁡ x − ∫ sin ⁡ x d x = x sin ⁡ x + cos ⁡ x + C \int x\cos x\mathrm dx=\int u\mathrm dv=uv-\int v\mathrm du=x\sin x-\int\sin x\mathrm dx=x\sin x+\cos x+C xcosxdx=udv=uvvdu=xsinxsinxdx=xsinx+cosx+C

这种方法同样可以运用到求和式上,我们有对应的分部求和法

先介绍若干记号。

Δ f ( x ) = f ( x + 1 ) − f ( x ) \Delta f(x)=f(x+1)-f(x) Δf(x)=f(x+1)f(x),为函数 f ( x ) f(x) f(x)的差分函数。 Δ \Delta Δ称为差分算子。

∑ f ( x ) δ x \sum f(x)\delta x f(x)δx不定和式,它的含义如下: F ( x ) = ∑ f ( x ) δ x F(x)=\sum f(x)\delta x F(x)=f(x)δx当且仅当 Δ F ( x ) = f ( x ) \Delta F(x)=f(x) ΔF(x)=f(x)

f ( x ) ∣ a b = f ( b ) − f ( a ) f(x)|_a^b=f(b)-f(a) f(x)ab=f(b)f(a)

∑ a b f ( x ) δ x \sum_a^b f(x)\delta x abf(x)δx定和式,它的含义如下:若 F ( x ) = ∑ f ( x ) δ x F(x)=\sum f(x)\delta x F(x)=f(x)δx,则 ∑ a b f ( x ) δ x = F ( b ) − F ( a ) \sum_a^b f(x)\delta x=F(b)-F(a) abf(x)δx=F(b)F(a)

利用传统的 ∑ \sum 表示方法,我们有 ∑ a b f ( x ) δ x = ∑ k = a b − 1 f ( k ) \sum_a^b f(x)\delta x=\sum\limits_{k=a}^{b-1}f(k) abf(x)δx=k=ab1f(k)。注意这里求和的上界是 b − 1 b-1 b1而不是 b b b

在有些参考书上 ∑ a b \sum_a^b ab也写作 ∑ a b \sum\limits_a^b ab

为了推导分部求和法,我们先推导两个函数的积的差分。
Δ ( u ( x ) v ( x ) ) = u ( x + 1 ) v ( x + 1 ) − u ( x ) v ( x ) \Delta(u(x)v(x))=u(x+1)v(x+1)-u(x)v(x) Δ(u(x)v(x))=u(x+1)v(x+1)u(x)v(x)

= ( u ( x ) + Δ u ( x ) ) v ( x + 1 ) − u ( x ) ( v ( x + 1 ) − Δ v ( x ) ) =(u(x)+\Delta u(x))v(x+1)-u(x)(v(x+1)-\Delta v(x)) =(u(x)+Δu(x))v(x+1)u(x)(v(x+1)Δv(x))

= Δ u ( x ) v ( x + 1 ) + u ( x ) Δ v ( x ) =\Delta u(x)v(x+1)+u(x)\Delta v(x) =Δu(x)v(x+1)+u(x)Δv(x)

两边求和
u ( x ) v ( x ) = ∑ Δ u ( x ) v ( x + 1 ) δ x + ∑ u ( x ) Δ v ( x ) δ x u(x)v(x)=\sum\Delta u(x)v(x+1)\delta x+\sum u(x)\Delta v(x)\delta x u(x)v(x)=Δu(x)v(x+1)δx+u(x)Δv(x)δx

∑ u ( x ) Δ v ( x ) δ x = u ( x ) v ( x ) − ∑ Δ u ( x ) v ( x + 1 ) δ x \sum u(x)\Delta v(x)\delta x=u(x)v(x)-\sum\Delta u(x)v(x+1)\delta x u(x)Δv(x)δx=u(x)v(x)Δu(x)v(x+1)δx

这个式子可以简写成
∑ u Δ v δ x = u v − ∑ Δ u E v δ x \sum u\Delta v\delta x=uv-\sum\Delta u\mathrm Ev\delta x uΔvδx=uvΔuEvδx
其中 E \mathrm E E移位算子,表示 E f ( x ) = f ( x + 1 ) \mathrm Ef(x)=f(x+1) Ef(x)=f(x+1)

很多时候我们要求的都是定和式,那么定和式的分部求和法形式就是
∑ a b u Δ v δ x = ( u v ) ∣ a b − ∑ a b Δ u E v δ x \sum_a^bu\Delta v\delta x=(uv)|_a^b-\sum_a^b\Delta u\mathrm Ev\delta x abuΔvδx=(uv)ababΔuEvδx
举个栗子:化简 S = ∑ k = 0 n − 1 C k m H k S=\sum\limits_{k=0}^{n-1}C_k^mH_k S=k=0n1CkmHk。其中 H n H_n Hn调和级数,定义为 H 0 = 0 , H n = ∑ i = 1 n 1 i H_0=0,H_n=\sum\limits_{i=1}^n\cfrac{1}{i} H0=0,Hn=i=1ni1

这里我们使用广义组合数,意味着当 k < m k<m k<m C k m = 0 C_k^m=0 Ckm=0

解: S = ∑ 0 n C x m H x δ x S=\sum_0^nC_x^mH_x\delta x S=0nCxmHxδx

u = H x , v = C x m + 1 u=H_x,v=C_x^{m+1} u=Hx,v=Cxm+1,那么 Δ v = C x + 1 m + 1 − C x m + 1 = C x m , Δ u = 1 x + 1 \Delta v=C_{x+1}^{m+1}-C_x^{m+1}=C_x^m,\Delta u=\cfrac{1}{x+1} Δv=Cx+1m+1Cxm+1=Cxm,Δu=x+11

S = ∑ 0 n u Δ v δ x = ( u v ) ∣ 0 n − ∑ 0 n 1 x + 1 C x + 1 m + 1 S=\sum_0^nu\Delta v\delta x=(uv)|_0^n-\sum_0^n\frac{1}{x+1}C_{x+1}^{m+1} S=0nuΔvδx=(uv)0n0nx+11Cx+1m+1

= C n m + 1 H n − ∑ k = 0 n − 1 1 k + 1 C k + 1 m + 1 =C_n^{m+1}H_n-\sum\limits_{k=0}^{n-1}\frac{1}{k+1}C_{k+1}^{m+1} =Cnm+1Hnk=0n1k+11Ck+1m+1

右边这个和式再熟悉不过了,利用吸收恒等式 1 k + 1 C k + 1 m + 1 = 1 m + 1 C k m \frac{1}{k+1}C_{k+1}^{m+1}=\frac{1}{m+1}C_k^m k+11Ck+1m+1=m+11Ckm,那么

S = C n m + 1 H n − 1 m + 1 ∑ k = 0 n − 1 C k m = C n m + 1 H n − 1 m + 1 C n m + 1 = C n m + 1 ( H n − 1 m + 1 ) S=C_n^{m+1}H_n-\frac{1}{m+1}\sum\limits_{k=0}^{n-1}C_k^m=C_n^{m+1}H_n-\frac{1}{m+1}C_n^{m+1}=C_n^{m+1}(H_n-\frac{1}{m+1}) S=Cnm+1Hnm+11k=0n1Ckm=Cnm+1Hnm+11Cnm+1=Cnm+1(Hnm+11)

还有一个我们很熟悉的栗子:化简 T = ∑ k = 1 n k C m + k m + 1 T=\sum\limits_{k=1}^nkC_{m+k}^{m+1} T=k=1nkCm+km+1。下面我们用分部求和法来试一试。

T = ∑ 1 n + 1 x C m + x m + 1 δ x T=\sum_1^{n+1}xC_{m+x}^{m+1}\delta x T=1n+1xCm+xm+1δx。设 u = x , v = C m + x m + 2 u=x,v=C_{m+x}^{m+2} u=x,v=Cm+xm+2,那么 Δ u = 1 , Δ v = C m + x m + 1 \Delta u=1,\Delta v=C_{m+x}^{m+1} Δu=1,Δv=Cm+xm+1

于是 T = ∑ 1 n + 1 u Δ v δ x = ( u v ) ∣ 1 n + 1 − ∑ 1 n + 1 Δ u E v δ x T=\sum_1^{n+1}u\Delta v\delta x=(uv)|_1^{n+1}-\sum_1^{n+1}\Delta u\mathrm Ev\delta x T=1n+1uΔvδx=(uv)1n+11n+1ΔuEvδx

= ( n + 1 ) C m + n + 1 m + 2 − ∑ k = 1 n C m + k + 1 m + 2 =(n+1)C_{m+n+1}^{m+2}-\sum\limits_{k=1}^nC_{m+k+1}^{m+2} =(n+1)Cm+n+1m+2k=1nCm+k+1m+2

= ( n + 1 ) C m + n + 1 m + 2 − C m + n + 2 m + 3 =(n+1)C_{m+n+1}^{m+2}-C_{m+n+2}^{m+3} =(n+1)Cm+n+1m+2Cm+n+2m+3

比传统做法更简便。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ArcGIS加权求和是一种用于将多个因素进行综合评价的方。它基于分析和权重分配,可以评估不同因素对空间分布的贡献程度。以下是有关ArcGIS加权求和的一些要点。 首先,ArcGIS加权求和要求我们对每个因素进行评分,并分配相应的权重。评分可以是连续的数字,也可以是离散的分类。权重表示了每个因素在影响结果时的相对重要性。通过合理设置权重,我们可以突出一些重要因素的影响,忽略一些次要因素的影响。 其次,ArcGIS加权求和将每个因素的评分与对应的权重相乘,然后将所有结果相加。这样可以得到一个综合评分,反映了各个因素在整体评估中的贡献。较高的综合评分表示该位置或区域在考虑的因素方面更为优越。 最后,ArcGIS加权求和在GIS软件中实现方便,可以根据需要灵活地添加、调整和修改因素和权重。这种方可以用于各个领域的分析,例如环境评价、土地评估、资源分配等。它在地理空间分析中起到了重要的作用。 需要注意的是,ArcGIS加权求和的有效性和准确性依赖于所选择的因素和权重。因此,在使用此方时,需要经过仔细的考虑并进行合理的选择和设定。 总而言之,ArcGIS加权求和是一种利用分析和权重分配来综合评估多个因素的方。它在GIS分析中具有广泛的应用,并且可以根据实际需要进行调整和修改。通过这种方,我们可以更好地理解不同因素对空间分布的贡献,为决策提供科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值