2021-7-14算法学习(算法笔记152-163)

这篇博客介绍了算法在解决数学问题中的应用,包括PATB1019题目的解法,最大公因数和最小公倍数的计算,分数的化简与输出,素数的判断以及1~n的素数表生成。通过递归和高效算法实现了这些功能,例如欧几里得算法用于求最大公因数,以及埃氏筛法筛选素数。
摘要由CSDN通过智能技术生成

一、简单数学 PATB1019

在这里插入图片描述
在这里插入图片描述
PATB1019
注意点:一个是输出格式,均为4位整数,最高位补0,此时的技巧是利用printf的格式化输出 %04d
另一个还是输出格式,仔细看PAT的样例,存在空格

#include<stdio.h>
#include<algorithm>
using namespace std;
bool cmp(int a,int b)
{
    return a>b;
}

void num_to_array(int number,int a[])
{
    for(int i=0;i<4;i++)
    {
        a[i]=number%10;
        number/=10;
    }
}

int array_to_num(int a[])
{
    int number=0;
    for(int i=3;i>=0;i--)
    {
        number=number*10+a[i];
    }
    return number;
}

int main()
{
    int number1,number2,result,a[10];
    int i;
    scanf("%d",&number1);


    while(1)
    {

        num_to_array(number1,a);
        sort(a,a+4,cmp);
        number1=array_to_num(a);
        sort(a,a+4);
        number2=array_to_num(a);
        if(number1==number2)
        {
            printf("%04d - %04d = 0000\n",number1,number2);
            break;
        }
        else
        {
            result=number2-number1;
            printf("%04d - %04d = %04d\n",number2,number1,result);
            if(result==6174) break;
            else
            {
                 number1=result;
            }
        }
    }

    
}

二、最大公因数和最小公倍数

对于最大公因数,作者提供了一个极其精妙的递归写法:
利用递归写法,还无需考虑a和b哪个大

#include<stdio.h>
int gcd(int a,int b)
{
    if(b==0) return a;
    else return gcd(b,a%b);
}
int main()
{
    int m,n;
    scanf("%d%d",&m,&n);
    printf("%d",gcd(m,n));
}

对于最小公倍数,[a,b]=ab/(a,b)
但保存ab时候会超时,因此利用一个常用技巧
a/(a,b) * b

三、分数化简 运算 输出

其中分数化简是需要关注的
分数化简只要记住三条原则

  1. 分子为0时,分母设置为1
  2. 如果分母为负,则分子分母都取相反数,让分母化为正
  3. 分子分母同除最大公约数,实现约分 (此处要注意取绝对值)
    分数输出的原则:
  4. 分母down为1,以整数形式输出
  5. 假分数 以带分数形式输出 (此处也要注意取绝对值)
#include <stdio.h>
#include <math.h>
struct Fraction
{
    int up;
    int down;
};

int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}

Fraction reduction(Fraction result)
{
    if (result.down < 0)
    {
        result.up = -result.up;
        result.down = -result.down;
    }
    if (result.up == 0)
        result.down = 1;
    else
    {
        int d = gcd(abs(result.up), abs(result.down)); //注意点:需要取绝对值
        result.up /= d;
        result.down /= d;
    }
    return result;
}

//分数输出
//分母down为1,以整数形式输出
//假分数 以带分数形式输出  ->一定要关注绝对值的使用
void showResult(Fraction r)
{
    r=reduction(r);
    if(r.down==1) printf("%d",r.up);
    else if(abs(r.up)>r.down)
    {
        printf("%d %d/%d",r.up/r.down,abs(r.up)%r.down,r.down);
    }
    else printf("%d/%d",r.up,r.down);

}

四、素数判断

#include<stdio.h>
#include<math.h>
 bool isPrime(int n)
 {
     if(n<=1) return false;

     int sqr=(int)sqrt(n*1.0); //sqrt的参数为浮点型,返回值也为浮点型

     for(int i=2;i<=sqr;i++)
     {
         if(n%i==0) return false;
     }

     return true;
 }


//写法2:n接近int型变量上界时会导致i*i溢出  n<10^9范围内安全
 bool isPrime2(int n)
 {
     if(n<=1) return false;
     //定义 long long i 就不怕溢出啦
     for(int i=2;i*i<=n;i++)
     {
         if(n%i==0) return false;
     }
     return true;
 }

五、1~n的素数表

有了之前的判断素数,其实已经有了一个直观的想法,直接遍历一个个判断即可
复杂度为O(n√n) 而这个复杂度对n<10^5的大小是没有问题的

int prime[100];
bool p[100]={false};

int Find_Prime(int n)//1~n素数表,返回值为素数个数
 {
     int i;
     int num=0;
     for(i=1;i<=100;i++)
     {
         if(isPrime(i))
           {
                prime[num++]=i;
                p[i]=true;
           }
     }
     return num;

 }
 int main()
 {
    int num=Find_Prime(100);
    // printf("%d ",num);
     int i;
     for(i=0;i<num;i++)
     {
         printf("%d ",prime[i]);
     }
 }

利用埃氏筛法,可以将时间复杂度降到O(n)

事先需要确定2为素数

注意点:在给p数组赋值时,可以全部赋值为0/false,但无法“简单地”全赋值为1/true

正确:int p[101]={0};
错误:int p[101]={1}; 实际上只有第一个元素p[0]被赋值为1

#include<stdio.h>
int p[101]={0};
int prime[101];
int FindPrime()
{
    int i,j;
    int num=0;
    for(i=2;i<101;i++)
    {
        if(p[i]==0)
        {
            prime[num++]=i;
            for(j=i+i;j<101;j+=i)
            {
                p[j]=1;  //标记为1,说明不是素数,被筛去
            }
        }
    }

    return num;
}

int main()
{
    int i;
    int num=FindPrime();
    for(i=0;i<num;i++)
    {
        printf("%d ",prime[i]);
    }
}
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值