金币阵列问题:
有m*n枚金币在桌面上排成一个金币阵列。每一个金币正面朝上,或背面朝上,分别用0和1表示。 金币阵列游戏的规则是:
(1)每次可将任一行金币翻过来放在原来的位置上;
(2)每次可任选2列,交换这2列金币的位置。
给定金币的初始状态和目标状态,计算按金币游戏规则,将金币阵列从初始状态变换到目标状态所需的最少变换次数
由于题目给的测试用例是43的阵列,我们以43的阵列来写(其实MN一样的思想)*
解题思路:
在这两种操作中,第一种操作可能会影响到某一行或者某一列中已经排列好的相关元素,因此,首先利用该规则进行变换,而后续的操作则不再利用该规则。
算法的具体思路如下:
(1)将矩阵中的每一列作为第1列,并利用第一个规则将第1列中的相关元素与目标矩阵中第1列的元素进行配对,如果不相同,则利用第1个规则进行翻转;
(2)从第2列开始,将处理后的列与目标列进行比较,如果相同,则转下一列;如果不相同,看是否可以通过列的交换完成,如果不可以,则无法做到,如果可以,则继续扫描,直至所有的列描述完成为止。
#include<stdio.h>
/*
1-4:金币列阵问题
每次操作:(2选1)
1.翻转当前列的所有金币
2.将两列的所有金币互换位置
输出内容:
若变换成功则输出需要变换的次数
若变换失败则输出-1
解题思路:
在这两种操作中,第一种操作可能会影响到某一行或者某一列中已经排列好的相关元素,因此,首先利用该规则进行变换,而后续的操作则不再利用该规则。
算法的具体思路如下:
(1)将矩阵中的每一列作为第1列,并利用第一个规则将第1列中的相关元素与目标矩阵中第1列的元素进行配对,如果不相同,则利用第1个规则进行翻转;
(2)从第2列开始,将处理后的列与目标列进行比较,如果相同,则转下一列;如果不相同,看是否可以通过列的交换完成,如果不可以,则无法做到,如果可以,则继续扫描,直至所有的列描述完成为止。
*/
int line = 4;
int column = 3;
int start[4][3]={{1,0,1},{0,0,0},{1,0,0},{1,1,1}};
int end[4][3]={{1,1,0},{1,1,1},{0,1,1},{1,0,1}};
int temparr[4][3];
int count;
int result;
void transline(int a){
for(int j=0; j<3; j++){
if(temparr[a][j] == 1){
temparr[a][j] == 0;
}
else{
temparr[a][j] == 1;
}
}
count++;
}
void transcolumn(int a,int b){
for(int i=0; i<4; i++){
int temp = temparr[i][a];
temparr[i][a] = temparr[i][b];
temparr[i][b] = temp;
}
if(a != b){
count++;
}
}
bool ifsame(int a,int b){
bool res = true;
for(int x=0; x<line; x++){
if(temparr[x][a] != end[x][b]){
res = false;
break;
}
}
return res;
}
int main(){
for(int k=0; k<3; k++){
for(int i=0; i<4; i++){
for(int j=0; j<3; j++){
temparr[i][j] = start[i][j];
}
}
count = 0;
transcolumn(0,k);
for(int i=0; i<4; i++){
if(temparr[i][0] != end[i][0]){
transline(i);
}
}
bool found;
for(int i=0; i<3; i++){
found = false;
if(ifsame(i,i)){
found = true;
continue;
}
for(int j=i+1; j<3; j++){
if(ifsame(i,j)){
transcolumn(i,j);
found = true;
break;
}
}
}
if(found == false){
result = -1;
break;
}
else{
result = count;
}
}
printf("%d\n",result);
return 0;
}