20200916 001_Flink-快速上手(简单Demo代码实现)
IDE:IDEA
Flink:1.10.1
scala:flink-scala_2.12.1.10.1
第二章 快速上手
2.1 搭建 maven 工程
2.1.1 pom 文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.atguigu</groupId>
<artifactId>FlinkTutorial</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.0</version>
<exclusions>
<exclusion>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 该插件用于将Scala代码编译成class文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>4.4.0</version>
<executions>
<execution>
<!-- 声明绑定到maven的compile阶段 -->
<goals>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin><!-- 打包-->
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.3.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef><!-- 打包时,把所有依赖打包进入 -->
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
2.2 Demo1: 批处理的WordCount程序
import org.apache.flink.api.scala.ExecutionEnvironment
import org.apache.flink.api.scala._
//批处理的WordCount程序
object WordCount {
def main(args: Array[String]): Unit = {
// 创建一个批处理执行环境
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
// 从文件中读取数据
val inputPath: String = "D:\\software\\CODE\\FlinkCode\\FlinkTutorial\\src\\main\\resources\\hello.txt"
val inputDataSet: DataSet[String] = env.readTextFile(inputPath)
// 对数据进行转换处理统计, 先分词,再按照word进行分组最后进行聚合统计
// ()元组类型
//
val resultDataSet: DataSet[(String, Int)] = inputDataSet
.flatMap(_.split(" "))// flatMap传一个function,
.map((_, 1))//map成一个二元组,来一个word 就统计它的值是1
.groupBy(0) //下标是以0为起始地址:以第一个元素作为key,进行分组
.sum(1) //1、传stirng类型,字段名称;2、传int类型,字段下标位置:对当前分组的所有数据的第二个元素求和
// 打印输出
resultDataSet.print()
}
}
2.3 Demo2: 流处理WordCount程序
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala._
//流处理WordCount
object StreamWordCount {
def main(args: Array[String]): Unit = {
// 创建流处理的执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
// env.setParallelism(20) //配置执行环境 并行度
// 从外部命令中提取参数, 作为socket主机名和端口号
val paramTool: ParameterTool = ParameterTool.fromArgs(args);
val host: String = paramTool.get("host")
val port: Int = paramTool.getInt("port")
// 接收一个socket文本流 "192.168.110.100"7777
val inputDataStream: DataStream[String] = env.socketTextStream(host, port)
// 进行转换处理统计
// 后面那些.方法名 都是 算子
// 可以给 每一个算子都设置一个并行度
val resultDataStream: DataStream[(String, Int)] = inputDataStream
.flatMap(_.split(" ")) // flatMap传一个function,
.filter(_.nonEmpty) // 过滤不为空
.map((_, 1)) // 当前元素计数为1
.keyBy(0) // 分组,相当于分区
.sum(1) // 对当前分组的所有数据的第二个元素叠加
resultDataStream.print().setParallelism(1)// 单独给这个print() 设置并行度 .setParallelism(1) 打印就没有前面的序号了
// 以上都是定义了一个任务,并没有执行
// 流处理 是事件驱动,等着数据来,然后再进行以上的数据处理
// 启动任务执行
env.execute("stream word count")
}
}
//从外部命令中提取参数, 作为socket主机名和端口号
Run-》Edit Configurations 配置一下Program arguments:如下