机器学习,几种学习速率衰减模式总结

本文介绍了机器学习中学习速率衰减的重要性及几种常见模式,包括luong234、luong5、luong10及noam等。这些模式帮助模型在训练后期更稳定地收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    在机器学习中,通常需要不断的通过优化器,优化以减小损失。在优化过程中,最经常用到的就是学习速率,也就是在通过梯度决定模型训练走向的时候所使用的一个总要参数。

    在经过多次优化之后,会出现疑惑度不会降低, 此时主要是因为,学习速率过大导致模型不能够很好的进行收敛。这个时候需要做的就是,减小学习速率,促使模型收敛。也就是标题中提到的学习速率衰减。

常见的学习速率衰减的几种模式:

  • luong234
  • luong5
  • luong10
  • noam

这几个模式主要是在开源模型中提到的,如果出现其他衰减模式,另做补充。

前三种衰减模式主要是:总步数,起始学习速率 有关

luong234 衰减方式,是通过在 总步数三分之二 之后开始衰减,接下来的平均衰减四次,每次衰减为上一次的二分之一

luong5 : 是指在总步数二分之一以后开始衰减,以后平均衰减五次,每次二分之一。

luong10: 和上面同理

noam: 与上面不同,主要和四个参数相关,当前步数(S), 预热步数(W_S), 网络层大小(L_S),原始学习速率(O_S)

每一步速率:

这样在每次优化的时候都会重新设置 学习速率。

学习速率衰减模式需要根据具体的情况进行选择。

### 学习率衰减的定义与作用 #### 定义 学习率(Learning Rate, LR)是机器学习和深度学习优化过程中的一个重要超参数,用于决定模型权重每次迭代更新的程度。学习率过大可能导致模型无法收敛,而过小则会显著增加训练时间甚至陷入局部最优解。因此,在训练过程中动态调整学习率成为一种常见策略。 学习率衰减是指随着训练进程逐渐降低学习率的一种技术[^1]。其主要目标是在训练初期采用较大的学习率快速逼近全局最小值附近区域,而在后期通过较小的学习率精细调节权重以达到更优解并提高稳定性[^2]。 #### 应用场景 学习率衰减被广泛应用在多种领域中: - **图像分类**:例如卷积神经网络(CNNs),当数据集较大且复杂度较高时,适当设置学习率衰减可以有效改善模型泛化能力。 - **语音识别**:对于序列建模任务如循环神经网络(RNNs)或长短时记忆(LSTM)结构来说,合理安排学习率变化有助于捕捉长期依赖关系。 - **自然语言处理(NLP)**:Transformer架构下的大规模预训练阶段通常也会利用自适应学习率调度器来加速收敛过程。 此外,在强化学习(Reinforcement Learning)领域同样存在对学习率管理的需求。由于环境交互特性以及奖励信号稀疏等问题的存在,精确控制每一步权值更新幅度显得尤为重要[^3]。 #### 实现方式 常见的学习率衰减实现方法有以下几种: - **基于时间(Time-based Decay)**: 随着训练轮数增加线性减少初始设定好的固定比例因子乘积形式表示当前时刻对应的新值大小; - **阶梯式衰减(Step Decay)**: 每隔一定数量epochs之后按照指定比率γ递减原有水平直至结束整个流程为止; 示例代码展示如何配置PyTorch框架下`lr_scheduler.StepLR()`函数完成此操作: ```python scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.7) ``` 上述语句表明每隔五个周期(epoch), 当前使用的最大学习速率将会变为原来的百分之七十[^4]. - **指数衰减(Exponential Decay)**: 类似于几何级数增长规律那样按幂次方关系不断缩小规模直到接近零点位置停止进一步变动. --- ### 总结 综上所述,学习率衰减作为一种有效的优化手段能够极大地促进各类人工智能系统的开发效率与表现效果。无论是传统监督学习还是新兴无/半监督乃至增强型范式的探索实践当中都不可或缺该环节的设计考量因素之一[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值