vLLM专题(二):安装-CPU

vLLM 是一个 Python 库,支持以下 CPU 变体。选择您的 CPU 类型以查看供应商特定的说明:
Intel/AMD x86
vLLM 最初支持在 x86 CPU 平台上进行基本模型推理和服务,支持的数据类型包括 FP32、FP16 和 BF16。

注意
此设备没有预构建的 wheel 包或镜像,因此您必须从源代码构建 vLLM。

1. 要求

Python 版本 3.9 至 3.12"
Intel/AMD x86
操作系统: Linux
编译器: gcc/g++ >= 12.3.0(可选,推荐)
指令集架构(ISA): AVX512(可选,推荐)

提示
Intel Extension for PyTorch (IPEX) 为 PyTorch 扩展了最新的功能优化,以在 Intel 硬件上提供额外的性能提升。

2. 使用 Python 设置

2.1 创建一个

### 关于vLLM项目中Qwen2-VL-7B模型的信息 #### 模型概述 Qwen2-VL-7B 是基于 Qwen 架构的一个特定变体,该架构由阿里云开发并开源。此模型旨在处理多模态任务,特别是涉及视觉和语言理解的任务。它集成了强大的图像编码器与先进的自然语言处理能力,使其能够理解和生成高质量的文字描述给定图片的内容。 #### 技术细节 根据官方文档,为了运行 Qwen2-VL-7B 模型,环境配置需满足一定条件[^1]。具体来说: - **Python 版本**: Python >= 3.8 推荐使用较新版本以获得更好的兼容性和性能优化。 - **PyTorch 要求**: 需要安装 PyTorch 并且其版本应大于等于 1.12[^4]。这可以通过指定额外索引来确保获取适用于 CPU 或 GPU 的正确构建版本 `pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu`。 - **其他依赖项**: - Transformers 库版本固定为 4.37.0,可通过命令 `pip install transformers==4.37.0` 来完成安装- Accelerate, Tiktoken 和 Einops 这些辅助工具对于加速推理过程以及提高效率至关重要,同样建议按照上述方法进行安装。 #### 安装指南 如果打算在不支持 CUDA 加速的设备上部署 Qwen2-VL-7B,则可以选择仅针对 CPU安装方案[^3]。操作流程如下所示: ```bash # 卸载现有 vllm 及 pytorch 包以防冲突 pip uninstall vllm torch # 下载并解压缩源码包 wget https://files.pythonhosted.org/packages/source/v/vllm/vllm-0.6.5.tar.gz tar -xvf vllm-0.6.5.tar.gz cd vllm-0.6.5 # 安装必要的依赖文件(专用于CPU) pip install -v -r requirements-cpu.txt \ --extra-index-url https://download.pytorch.org/whl/cpu # 设置目标设备变量并执行安装脚本 export VLLM_TARGET_DEVICE=cpu python setup.py install ``` 通过以上步骤即可成功搭建起适合本地测试或生产使用的 Qwen2-VL-7B 环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无声之钟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值