【NOIP 1997 普及组】统计方形

题目描述

有一个 n × m n×m n×m 方格的棋盘,求其方格包含多少正方形、长方形(不包含正方形)。

时间限制:1 s
内存限制:128 MB

  • 输入
    一行,两个正整数 n n n m m m。原题数据范围较小,这里假设 n n n m m m 均小于 50000 50000 50000
  • 输出
    一行,两个正整数,分别表示方格包含多少正方形、长方形(不包含正方形)。
  • 样例输入
    2 3
    
  • 样例输出
    8 10
    

思路分析

原题可以用双层循环来解决,数据加强后的题目若仍然用双层循环,在不加任何优化开关的情况下会超时。为了保持思路的清晰,这里我们仍然从双层循环讲起。

分别枚举两条邻边的长度,假设水平方向的边长为 e d g e a edge_a edgea,总长度为 n n n,那么水平方向有 n − e d g e a + 1 n - edge_a + 1 nedgea+1 种不同的情况。同理可得竖直方向有 m − e d g e b + 1 m - edge_b + 1 medgeb+1 种不同的情况。因此在枚举过程中若 e d g e a = e d g e b edge_a = edge_b edgea=edgeb,将 ( n − e d g e a + 1 ) × ( m − e d g e b + 1 ) (n - edge_a + 1) \times (m - edge_b + 1) (nedgea+1)×(medgeb+1) 累加到正方形数量中,否则将 ( n − e d g e a + 1 ) × ( m − e d g e b + 1 ) (n - edge_a + 1) \times (m - edge_b + 1) (nedgea+1)×(medgeb+1) 累加到长方形数量中即可。该算法的时间复杂度为 O ( n m ) O(nm) O(nm)

/*
 * Name: count1.cpp
 * Problem: 统计方形
 * Author: Teacher Gao.
 * Date&Time: 2024/03/07 23:52
 */

#include <iostream>

using namespace std;

int main()
{
	long long n, m, square = 0, rectangle = 0;
	cin >> n >> m;

	for (int edge_a = 1; edge_a  <= n; edge_a++) {
		for (int edge_b = 1; edge_b <= m; edge_b++) {
            if (edge_a == edge_b) {
                square += (n - edge_a + 1) * (m - edge_a + 1);
            }
            else {
                rectangle += (n - edge_a + 1) * (m - edge_b + 1);
            }
			
		}
	} 
	
	cout << square << ' ' << rectangle;

	return 0;
}

考虑上述双重循环,在计算长方形数量时若不区分正方形和长方形,直接累加到长方形数量中,最终减去正方形的数量亦可。注意到长方形的边长 e d g e a edge_a edgea e d g e b edge_b edgeb 会分别取遍 1 ∼ n 1 \sim n 1n 1 ∼ m 1 \sim m 1m,因此我们对上述公式稍作变形(变量代换)可以得到 e d g e a × e d g e b edge_a \times edge_b edgea×edgeb。于是,在此种情况下,长方形数量满足公式
∑ i ∈ [ 1 , n ] , j ∈ [ 1 , m ] i j = ( ∑ i = 1 n i ) ( ∑ j = 1 m j ) = n ( n + 1 ) 2 × m ( m + 1 ) 2 \sum_{i \in [1, n], j \in [1, m]}i j = \bigg(\sum_{i = 1}^{n}i\bigg) \bigg(\sum_{j = 1}^{m}j\bigg) = \frac{n (n + 1)}{2} \times \frac{m (m + 1)}{2} i[1,n],j[1,m]ij=(i=1ni)(j=1mj)=2n(n+1)×2m(m+1)

事实上,正方形的边长最长为 min ⁡ { n , m } \min\{n, m\} min{n,m}。利用正方形边长相等的特点,可以用单层循环枚举正方形的边长 e d g e edge edge,将 ( n − e d g e + 1 ) × ( m − e d g e + 1 ) (n - edge + 1) \times (m - edge + 1) (nedge+1)×(medge+1) 累加到正方形数量中即可。该算法的时间复杂度为 O ( min ⁡ { n , m } ) O(\min\{n, m\}) O(min{n,m})

/*
 * Name: count2.cpp
 * Problem: 统计方形
 * Author: Teacher Gao.
 * Date&Time: 2024/03/08 00:00
 */

#include <iostream>

using namespace std;

int main()
{
	long long n, m, square = 0, rectangle = 0;
	cin >> n >> m;
	
	if (n > m) swap(n, m);
    for (int edge = 1; edge <= n; edge++) {
        square += (n - edge + 1) * (m - edge + 1);
    }
    rectangle = m * (m + 1) / 2 * (n * (n + 1) / 2);
	
	cout << square << ' ' << rectangle - square;

	return 0;
}

接下来,我们对正方形的数量也进行公式化分析。不失一般性地,我们假设 n < m n < m n<m。对正方形的计算式稍作变形(变量代换),可以得到正方形数量的计算公式
∑ i ∈ [ 1 , n ] i ( m − n + i ) = ( m − n ) ∑ i ∈ [ 1 , n ] i + ∑ i ∈ [ 1 , n ] i 2 = ( m − n ) × n ( n + 1 ) 2 + n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i \in [1, n]}i (m - n + i) = (m - n) \sum_{i \in [1, n]}i + \sum_{i \in [1, n]}i^2 = (m - n) \times \frac{n (n + 1)}{2} + \frac{n (n + 1) (2n + 1)}{6} i[1,n]i(mn+i)=(mn)i[1,n]i+i[1,n]i2=(mn)×2n(n+1)+6n(n+1)(2n+1)

至此,我们得到了此题 O ( 1 ) O(1) O(1) 时间复杂度的解法。

/*
 * Name: count3.cpp
 * Problem: 统计方形
 * Author: Teacher Gao.
 * Date&Time: 2024/03/08 00:10
 */

#include <iostream>

using namespace std;

int main()
{
	long long n, m, square = 0, rectangle = 0;
	cin >> n >> m;
	
	if (n > m) swap(n, m);
    square = n * (n + 1) / 2 * (2 * n + 1) / 3 + n * (n + 1) / 2 * (m - n);
    rectangle = m * (m + 1) / 2 * (n * (n + 1) / 2);
	
	cout << square << ' ' << rectangle - square;

	return 0;
}

评价

此题的难度并不算大,但是对程序效率的优化并不容易想得到。博主在教学过程中发现,几乎所有学生都只会用循环嵌套的方式求解,极少有学生对公式求出闭式解。类似这种具有明显规律的循环求和问题,求出闭式解是优化程序效率的一种行之有效的方法。

  • 34
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朔北之忘 Clancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值