解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (1)

解读Depth Map Prediction from a Single Image using a Multi-Scale Deep Network (1)


我不会把这些翻译成中文,一是麻烦,二是因为英语是无法回避的!

先来看一下摘要,可以得到一些信息:

(1) Predicting depth is an essential component in understanding the 3D geometry of a scene

(2) A new method is presented to find depth relations from a single view by employing two

     deep network stacks:

    a. makes a coarse global prediction based on the entire image

    b. refines this prediction locally

(3) apply a scale-invariant error to help measure depth relations

再来看看Inroduction和Related work,可以得到前人在做深度估计的成就

(1)Provided accurate image correspondences, depth can be recovered deterministically in the stereo

     case [5]

(2) predict depth from a set of image features using linear regression and a MRF [15]

(3) integrate semantic object labels with monocular depth features to improve performance [12]

(4) use a KNN transfer mechanism based on SIFT Flow to estimate depths of static backgrounds

      from single images, which they augment with motion information to better estimate moving

       foreground subjects in video [7, 11]


当然,我的摘抄分析不一定完全。从他人成就来看,用CNN处理单目深度估计的思想是超前的

来看看他们怎么叙述自己的Approach,


从图1(Model architecture),很容易了解CNN网络处理图片的过程

如果你像我一样不明把conv,stride,pool的含义,可以参考这篇博文点击打开链接


学习这篇博文中。。。。。。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值