【信息论】离散信息源

一、基本概念

1、离散信息源定义

一类信源输出的消息常常以一个个符号的形式,例如文字、字母等,这些符号的取值是有限个的或可数的,这样的信源称为离散信源。

2、离散信息源

{ a 1 , a 2 , ⋯   , a n } \begin{Bmatrix} a_{1},a_{2},\cdots,a_{n} \end{Bmatrix} {a1,a2,,an}

3、单符号离散信源数学模型

{ x p ( x ) } = { a 1 a 2 ⋯ a n p ( a 1 ) p ( a 2 ) ⋯ p ( a n ) } \begin{Bmatrix} x\\ p(x) \end{Bmatrix}= \begin{Bmatrix} a_{1} & a_{2} & \cdots & a_{n}\\ p(a_{1}) & p(a_{2}) & \cdots & p(a_{n}) \end{Bmatrix} {xp(x)}={a1p(a1)a2p(a2)anp(an)}

4、自信息量

若随机事件发生 a i a_{i} ai的概率为 p ( a i ) p(a_{i}) p(ai),那么它的自信息量 I ( a i ) I(a_{i}) I(ai)
I ( a i ) = − log ⁡ 2 p ( a i ) I(a_{i})=-\log_{2}p(a_{i}) I(ai)=log2p(ai)

例子
某地二月份天气的概率分布统计如下:
{ X P ( X ) } = { a 1 ( 晴 ) , a 2 ( 阴 ) , a 3 ( 雨 ) , a 4 ( 雪 ) 1 / 2 , 1 / 4 , 1 / 8 , 1 / 8 } \begin{Bmatrix} X\\ P(X) \end{Bmatrix} =\begin{Bmatrix} a_{1}(晴), &a_{2}(阴), &a_{3}(雨), &a_{4}(雪)\\ 1/2, &1/4, &1/8, &1/8 \end{Bmatrix} {XP(X)}={a1(),1/2,a2(),1/4,a3(),1/8,a4()1/8}这四种气候的自信息量分别为 I ( a 1 ) = 1 b i t , I ( a 2 ) = 2 b i t , I ( a 3 ) = 3 b i t , I ( a 4 ) = 3 b i t I(a_{1})=1bit,I(a_{2})=2bit,I(a_{3})=3bit,I(a_{4})=3bit I(a1)=1bitI(a2)=2bitI(a3)=3bitI(a4)=3bit

5、联合自信息量

两个随机事件的离散信息源,其信源模型为
{ X Y P ( X Y ) } = { a 1 b 1 ⋯ a 1 b m a 2 b 1 ⋯ a 2 b m ⋯ a n b 1 ⋯ a n b m p ( a 1 b 1 ) ⋯ p ( a 1 b m ) p ( a 2 b 1 ) ⋯ p ( a 2 b m ) ⋯ p ( a n b 1 ) ⋯ p ( a n b m ) } \begin{Bmatrix} XY\\ P(XY) \end{Bmatrix} =\begin{Bmatrix} a_{1}b_{1} & \cdots & a_{1}b_{m} & a_{2}b_{1} & \cdots & a_{2}b_{m} & \cdots & a_{n}b_{1} & \cdots & a_{n}b_{m}\\ p(a_{1}b_{1}) & \cdots & p(a_{1}b_{m}) & p(a_{2}b_{1}) & \cdots & p(a_{2}b_{m}) & \cdots & p(a_{n}b_{1}) & \cdots & p(a_{n}b_{m}) \end{Bmatrix} {XYP(XY)}={a1b1p(a1b1)a1bmp(a1bm)a2b1p(a2b1)a2bmp(a2bm)anb1p(anb1)anbmp(anbm)}联合自信息量
I ( a i b j ) = − log ⁡ 2 p ( a i b j ) I(a_{i}b_{j})=-\log_{2}p(a_{i}b_{j}) I(aibj)=log2p(aibj)

6、条件自信息量

b j b_{j} bj条件下发生 a i a_{i} ai的条件概率为 p ( a i ∣ b j ) p(a_{i}|b_{j}) p(aibj),那么它的条件自信息量定义为 I ( a i ∣ b j ) I(a_{i}|b_{j}) I(aibj)
I ( a i ∣ b j ) = − log ⁡ 2 p ( a i ∣ b j ) I(a_{i}|b_{j})=-\log_{2}p(a_{i}|b_{j}) I(aibj)=log2p(aibj)

7、相关公式

I ( a i b j ) = − log ⁡ 2 p ( a i ) p ( b j ∣ a i ) = I ( a i ) + I ( b j ∣ a i ) I ( a i b j ) = − log ⁡ 2 p ( b j ) p ( a i ∣ b j ) = I ( b j ) + I ( a i ∣ b j ) I(a_{i}b_{j})=-\log_{2}p(a_{i})p(b_{j}|a_{i})=I(a_{i})+I(b_{j}|a_{i}) \\ I(a_{i}b_{j})=-\log_{2}p(b_{j})p(a_{i}|b_{j})=I(b_{j})+I(a_{i}|b_{j}) I(aibj)=log2p(ai)p(bjai)=I(ai)+I(bjai)I(aibj)=log2p(bj)p(aibj)=I(bj)+I(aibj)

二、信源熵

1、信源熵的定义

(1) 信源熵

已知单符号离散无记忆信源的数学模型
{ x p ( x ) } = { a 1 a 2 ⋯ a n p ( a 1 ) p ( a 2 ) ⋯ p ( a n ) } \begin{Bmatrix} x\\ p(x) \end{Bmatrix}= \begin{Bmatrix} a_{1} & a_{2} & \cdots & a_{n}\\ p(a_{1}) & p(a_{2}) & \cdots & p(a_{n}) \end{Bmatrix} {xp(x)}={a1p(a1)a2p(a2)anp(an)}其中 0 ≤ p ( a i ) ≤ 1 ( i = 1 , 2 , ⋯   , n ) 0 \leq p(a_{i}) \leq 1 (i=1,2,\cdots,n) 0p(ai)1(i=1,2,,n),且 ∑ i = 1 n p ( a i ) = 1 。 \sum_{i=1}^{n}p(a_{i})=1。 i=1np(ai)=1
我们定义信源各个离散消息的自信息量的数学期望(即概率加权的统计平均值)为信源的平均信息量,一般称为信源的信息熵,也叫信源熵香农熵,简称,记为 H ( X ) H(X) H(X)
H ( X ) = E [ I ( a i ) ] = E [ log ⁡ 2 1 p ( a i ) ] = − ∑ i = 1 n p ( a i ) log ⁡ 2 p ( a i ) H(X)= E[I(a_{i})]=E[\log_{2}{1 \over p(a_{i})}]=-\sum_{i=1}^n{ p(a_{i})\log_{2} p(a_{i})} H(X)=E[I(ai)]=E[log2p(ai)1]=i=1np(ai)log2p(ai)

例子
再讨论前面的例题,即某地二月份天气的概率分布统计如下:
{ X P ( X ) } = { a 1 ( 晴 ) , a 2 ( 阴 ) , a 3 ( 雨 ) , a 4 ( 雪 ) 1 / 2 , 1 / 4 , 1 / 8 , 1 / 8 } \begin{Bmatrix} X\\ P(X) \end{Bmatrix} =\begin{Bmatrix} a_{1}(晴), &a_{2}(阴), &a_{3}(雨), &a_{4}(雪)\\ 1/2, &1/4, &1/8, &1/8 \end{Bmatrix} {XP(X)}={a1(),1/2,a2(),1/4,a3(),1/8,a4()1/8}该信源的熵为 H ( X ) = − 1 2 log ⁡ 2 1 2 − 1 4 log ⁡ 2 1 4 − ( 1 8 log ⁡ 2 1 8 ) × 2 = 1.75 ( b i t / s i g n ) H(X) = -{1\over 2} \log_{2}{1 \over 2}-{1\over 4} \log_{2}{1 \over 4}-({1\over8} \log_{2}{1 \over 8})\times2=1.75(bit/sign) H(X)=21log22141log241(81log281)×2=1.75(bit/sign)

(2) 条件熵

条件熵是在联合符号集合XY上的条件自信息量数学期望,在已知随机变量Y的条件下,随机变量X的条件熵 H ( X ∣ Y ) H(X|Y) H(XY)定义为
H ( X ∣ Y ) = E [ I ( b j ∣ a i ) ] = − ∑ j = 1 m ∑ i = 1 n p ( a i b j ) I ( a i b j ) = ∑ j = 1 m ∑ i = 1 n p ( a i b j ) log ⁡ 2 p ( a i ∣ b j ) H(X|Y)=E[I(b_{j}|a_{i})]=-\sum_{j=1}^{m}\sum_{i=1}^{n}p(a_{i}b_{j})I(a_{i}b_{j})=\sum_{j=1}^{m}\sum_{i=1}^{n}p(a_{i}b_{j})\log_{2}p(a_{i}|b_{j}) H(XY)=E[I(bjai)]=j=1mi=1np(aibj)I(aibj)=j=1mi=1np(aibj)log2p(aibj)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值