问题描述
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 104
解题思路:
这个问题和斐波那契数问题类似。和斐波那契数一样,我们可以用更有效的方法来计算解,而不是简单的递归。
解决递归中堆栈溢出的问题的一个思路就是使用动态规划(DP)技术,该技术建立在重用中间解的结果来计算终解的思想之上。
要计算 numSquares(n) 的值,首先要计算 n之前的所有值,即numSquares(n-k) ,这里k是平方数,如果我们已经在某个地方保留了数字 n-k的解,那么就不需要使用递归计算。
首先初始化长度为 n+1 的数组 dp,每个位置都为 0
如果 n 为 0,则结果为 0
对数组进行遍历,下标为 i,每次都将当前数字先更新为最大的结果,即 dp[i]=i,比如 i=4,最坏结果为 4=1+1+1+1 即为 4 个数字
动态转移方程为:dp[i] = MIN(dp[i], dp[i - j * j] + 1),i 表示当前数字,jj 表示平方数
时间复杂度:O(nsqrt(n))O(n∗sqrt(n)),sqrt 为平方根
实现代码
class Solution {
public int numSquares(int n) {
//dp[i]代表数i的完全平方数的最少数量
int dp[]=new int[n+1];
for(int i=1;i<=n;i++){
//初始化为i,最坏情况下的完全平方数的个数
dp[i]=i;
for(int j=0;i-j*j>=0;j++){
//比较当前统计的完全平方数的个数,与数i-j*j+j*j这种情况下的完全平方数的个数
dp[i]=Math.min(dp[i],dp[i-j*j]+1);
}
}
return dp[n];
}
}