leetcode题解279-完全平方数

76 篇文章 1 订阅
这篇博客讨论了一种使用动态规划方法解决寻找正整数n的完全平方数和的最少数量的问题。通过避免递归并利用斐波那契数列的性质,可以有效地计算出解,减少堆栈溢出的可能性。博主详细介绍了动态规划的实现过程,包括初始化数组、动态转移方程的建立,并给出了解决问题的时间复杂度为O(nsqrt(n))。此外,还提供了具体的Java代码实现。
摘要由CSDN通过智能技术生成

问题描述

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

1 <= n <= 104

解题思路:

这个问题和斐波那契数问题类似。和斐波那契数一样,我们可以用更有效的方法来计算解,而不是简单的递归。

解决递归中堆栈溢出的问题的一个思路就是使用动态规划(DP)技术,该技术建立在重用中间解的结果来计算终解的思想之上。

要计算 numSquares(n) 的值,首先要计算 n之前的所有值,即numSquares(n-k) ,这里k是平方数,如果我们已经在某个地方保留了数字 n-k的解,那么就不需要使用递归计算。

首先初始化长度为 n+1 的数组 dp,每个位置都为 0
如果 n 为 0,则结果为 0
对数组进行遍历,下标为 i,每次都将当前数字先更新为最大的结果,即 dp[i]=i,比如 i=4,最坏结果为 4=1+1+1+1 即为 4 个数字
动态转移方程为:dp[i] = MIN(dp[i], dp[i - j * j] + 1),i 表示当前数字,jj 表示平方数
时间复杂度:O(n
sqrt(n))O(n∗sqrt(n)),sqrt 为平方根

实现代码

class Solution {
    public int numSquares(int n) {
        //dp[i]代表数i的完全平方数的最少数量
        int dp[]=new int[n+1];
        for(int i=1;i<=n;i++){
            //初始化为i,最坏情况下的完全平方数的个数
            dp[i]=i;
            for(int j=0;i-j*j>=0;j++){
                //比较当前统计的完全平方数的个数,与数i-j*j+j*j这种情况下的完全平方数的个数
                dp[i]=Math.min(dp[i],dp[i-j*j]+1);
            }
        }
        return dp[n];
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值