Graph Theory Adjacency List.解释

本文详细介绍了图论中的邻接表结构,包括边集结构体和起点数组的定义,以及如何通过邻接表存储无向图。通过具体实例展示了如何插入边并初始化邻接表,以及使用深度优先搜索(DFS)判断节点间的连通性。文章以一道图论题目为例,解释了题目要求及样例数据,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



图论邻接表札记

邻接表是由结构体数组e[ ]+linkk[ ]组成的用于储存图的一种形式,具有代码书写较复杂,找邻接点快的特点。一般采用动态存储结构(指针或数组模拟)存储,在点数>=5000的情况下使用。
      ps.
忽略本文程序大写

—————————以下正文—————————

——相关基本概念——

A

Struct  adjacency//边集结构体

{

Int y;//这条边的终点编号

Int v;//这条边的权值

Int next; //由这条边的起点为起点的下一条边的编号

}e[200000];//边集数组

eg. e[len]//len表示边的编号

   e[len].y//表示len这条边的终点编号

   e[len].v//表示len这条边的权值

   e[len].next//表示由len这条边的起点为起点的下一条边的编号

B

Int  linkk[200000];//起点数组(起点表),用于表示从某个点i为起点的第一条边的编号

eg. linkk[x]就存了从起点x出发的第一条边的编号

 

——相关操作——

以校内题库图论模版题. #301田地上的环 为例

【图论】田野上的环 - 题目 - UniversalOnline Judge

FJ 让他的N (1 <= N <=250)只编号为从1N的奶牛在田地里玩.这些奶牛决定用M1<=M<=N*(N+1)/2)牛绳将各自连接起来.当然

### Graphs in Computer Science and Technology Graph theory plays an essential role within computer science, providing a powerful framework to model relationships between objects or entities. A graph consists of vertices (also called nodes) connected by edges that can be directed or undirected depending on whether the relationship has directionality[^1]. In many applications such as social networks, transportation systems, and web pages linking structure, graphs serve as fundamental models representing these complex interconnections effectively. #### Representation Methods for Graph Data Structure Two primary methods exist for storing graph data structures: - **Adjacency Matrix**: This method uses a two-dimensional array where each entry indicates presence/absence of connection between pairs of vertices. - **Adjacency List**: An alternative approach involves maintaining lists associated with every vertex containing all directly reachable neighbors from it through existing connections represented via linked entries pointing towards adjacent elements forming chains emanating outwardly starting at source points until reaching terminal destinations along paths traversed during searches conducted over network topologies described mathematically using this formalism[^2]. #### Common Operations Performed on Graphs Several key operations frequently performed include but are not limited to: - Traversing entire components recursively visiting unvisited parts systematically ensuring full coverage without redundancy; - Searching specific items efficiently utilizing depth-first search (DFS), breadth-first search (BFS); - Finding shortest path solutions connecting distant locations optimally under varying constraints like distance minimization criteria applied across weighted links joining intermediate stops encountered en route when navigating large-scale interconnected frameworks modeled after real-world scenarios found commonly today inside modern software platforms built around robust computational paradigms supporting advanced analytics capabilities leveraging insights derived therefrom[^3]. ```python import collections def bfs(graph, start): visited = set() queue = collections.deque([start]) while queue: node = queue.popleft() if node not in visited: print(node) visited.add(node) for neighbor in graph[node]: if neighbor not in visited: queue.append(neighbor) # Example usage graph_example = { 'A': ['B', 'C'], 'B': ['D', 'E'], 'C': [], 'D': [], 'E': [] } bfs(graph_example, 'A') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值