以数据为中心
1、从大数据转向优质数据;
2、保持神经网络不变,转向寻找改进数据的方法。能够检测出大数据的标注错误的工具需要开发出来,以改善数据的一致性。能够将注意力定位到分类错误的一类,然后详细分析,调整该类数据,而不是为了该类数据而去改进模型。
3、合成数据不仅仅用来增加整个数据集的量,而且可以只针对表现不佳的类别进行数据的合成,更有针对性的解决问题。希望看到使用合成的数据成为迭代模型开发闭环的一部分。
以数据为中心
1、从大数据转向优质数据;
2、保持神经网络不变,转向寻找改进数据的方法。能够检测出大数据的标注错误的工具需要开发出来,以改善数据的一致性。能够将注意力定位到分类错误的一类,然后详细分析,调整该类数据,而不是为了该类数据而去改进模型。
3、合成数据不仅仅用来增加整个数据集的量,而且可以只针对表现不佳的类别进行数据的合成,更有针对性的解决问题。希望看到使用合成的数据成为迭代模型开发闭环的一部分。