之前的文章都聚焦在传统的机器学习上,作为入门,学了许多机器学习的基础。往后的文章我会穿插着机器学习和深度学习的内容进行,所有有必要在这里先说下两者的关系。
一、从范围上讲
深度学习和机器学习都是人工智能的一个子领域,它们之间的关系可以理解为包含和被包含的关系。机器学习是实现人工智能的一种方法,而深度学习是机器学习的子领域。
机器学习是一种让机器通过数据学习知识和规律,并应用这些知识规律进行决策或预测的技术。在机器学习中,典型的方法包括线性回归、决策树、支持向量机、集成学习等等。
深度学习是机器学习的一个重要分支,它模仿人脑神经网络的工作机制,设计了多层的神经网络结构,这就是深度学习中的"深度"。深度学习中通常采用神经网络模型,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等进行模型设计。
可以说深度学习是机器学习的一个延伸和深化,它在处理大规模、高维度和复杂数据时展现出卓越的性能,特别是在图像识别、语音识别、自然语言处理等领域取得了突破性进展。所有的深度学习都是机器学习,但并非所有的机器学习都是深度学习。
二、从学习的过程上讲
深度学习和机器学习从学习的目的上来说都是以损失函数为基准