【机器学习300问】19、深度学习和机器学习什么关系?

本文探讨了深度学习与机器学习之间的关系,包括它们的范围、学习过程差异,以及深度学习的自动特征学习能力。深度学习是机器学习的一部分,特别在复杂数据处理上表现出色,而机器学习则强调人工特征工程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        之前的文章都聚焦在传统的机器学习上,作为入门,学了许多机器学习的基础。往后的文章我会穿插着机器学习和深度学习的内容进行,所有有必要在这里先说下两者的关系。

一、从范围上讲

        深度学习和机器学习都是人工智能的一个子领域,它们之间的关系可以理解为包含和被包含的关系。机器学习是实现人工智能的一种方法,而深度学习是机器学习的子领域。

        机器学习是一种让机器通过数据学习知识和规律,并应用这些知识规律进行决策或预测的技术。在机器学习中,典型的方法包括线性回归、决策树、支持向量机、集成学习等等。

        深度学习是机器学习的一个重要分支,它模仿人脑神经网络的工作机制,设计了多层的神经网络结构,这就是深度学习中的"深度"。深度学习中通常采用神经网络模型,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等进行模型设计。

        可以说深度学习是机器学习的一个延伸和深化,它在处理大规模、高维度和复杂数据时展现出卓越的性能,特别是在图像识别、语音识别、自然语言处理等领域取得了突破性进展。所有的深度学习都是机器学习,但并非所有的机器学习都是深度学习。

二、从学习的过程上讲

        深度学习和机器学习从学习的目的上来说都是以损失函数为基准࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值