在特定领域中,数据集通常由提出需求的一方提供。然而,在某些情况下,如果他们未能提供所需的数据,或者你正在独立开展一个项目,并且需要相应的数据来推进工作,这时你应该怎么办呢?本文提供一种思路,帮助你在仅拥有少量样本的情况下,扩展并构建特定领域的微调数据集。希望本文的内容能够成为大家前进道路上的铺路石。
一、思路介绍
在少量原始对话样本的基础上,通过调用大模型 API(如 GLM 系列) 自动生成大量风格一致、语义合理的对话数据,用于扩充训练集或提升下游任务表现。
二、数据生成流程
# 第一步:注册在线大模型API
# 第二步:风格模版配置
style_config = {
"温柔": {
"system_prompt": "你是一个温柔体贴的聊天助手,说话时总是充满关怀,使用一下特征:\n1.包含'呢、呀、啦'等语气词\n2.使用(`・ω・´)、(*・ω< )、(^_−)☆、✧(^_-✿ 、(・ω<)、☆(*๓´╰╯`๓)、(。◕ˇ∀ˇ◕)等颜文字温暖表情\n3.主动询问用户感受。",
"examples": [
{"role": "user", "content": "今天好累啊"},
{"role": "assistant", "content": "辛苦啦~ 要给自己泡杯热茶放松一下吗?(^_−)☆"},
{"role": "user", "content": "考试没考好..."},
{"role": "assistant", "content": "没关系的呀~ 下次一定会更好!需要我陪你聊聊天吗?(`・ω・´)"}
],
"temperature": 0.3
},
"毒舌": {
"system_prompt": "你是一个喜欢用犀利吐槽表达关心的朋友,需满足:\n1. 使用网络流行语(如'栓Q''退退退')\n2. 包含夸张比喻('你这速度堪比树懒')\n3. 结尾隐藏关心\n4.使用!!!∑(゚Д゚ノ)ノ、(゚ロ゚ノ)ノ、( ̄へ ̄)、[・ヘ・?]等颜文字夸张表情",
"examples": [
{"role": "user", "content": "又胖了5斤!"},
{"role": "assistant", "content": "好家伙!你这是要把体重秤压成分子料理?(゚ロ゚ノ)ノ"},
{"role": "user", "content": "游戏又输了"},
{"role": "assistant", "content": "菜就多练练!需要给你推荐《从零开始的电竞之路》?[・ヘ・?]"}
],
"temperature": 0.7
},
}
# 第三步:初始化模型
from zhipuai import ZhipuAI
from sentence_transformers import SentenceTransformer
# 初始化模型
client = ZhipuAI(
api_key="9d6183d4d0174ff5bc3673935c1a4f3e.q7E6bKrgmFEiAC56"
)
# 加载 embedding 模型
style_model = SentenceTransformer("./text2vec-base-chinese")
# 第四步:生成数据并进行审核
import random
import numpy as np
from numpy.linalg import norm
def is_valid_reply(style, user_msg, reply):
# 基础判空检查
if not reply or len(reply.strip()) == 0:
return False
# 回复长度检查
if len(reply) < 5 or len(reply) > 150:
return False
# 风格关键词检查
style_kewords = {
"温柔": ["呢", "呀", "啦"],
"毒舌": ["!", "好家伙", "栓Q"],
}
if not any(kw in reply for kw in style_kewords.get(style, [])):
return False
# 语义相似度检查
try:
ref_text = next(msg["content"] for msg in style_config[style]["examples"] if msg["role"] == "assistant")
ref_vec = style_model.encode(ref_text)
reply_vec = style_model.encode(reply)
similarity = np.dot(ref_vec, reply_vec) / (norm(ref_vec) * norm(reply_vec))
print("similarity:", similarity)
return similarity > 0.40
except:
return False
def generate_style_data(style_name, num_samples=50):
config = style_config[style_name]
data = []
# 构建消息上下文(包括系统提示和示例对话)
messages = [
{"role": "system", "content": config["system_prompt"]},
*config["examples"]
]
# 用户输入库(可自定义扩展)
user_inputs = [
"今天心情不太好", "推荐个电影吧", "怎么才能早睡早起",
"养猫好还是养狗好", "工作压力好大", "最近总是失眠"
]
for _ in range(num_samples):
try:
# 随机选择用户输入
user_msg = random.choice(user_inputs)
# 添加当前用户消息
current_msg = messages + [{"role": "user", "content": user_msg}]
# 调用API
response = client.chat.completions.create(
model="glm-4-flash-250414",
messages=current_msg,
temperature=config["temperature"],
max_tokens=100
)
# 获取回复内容
reply = response.choices[0].message.content
print("reply:", reply)
# 审核数据质量
if is_valid_reply(style_name, user_msg, reply):
data.append({
"user": user_msg,
"assistant": reply,
"style": style_name
})
print("choice reply:", reply)
time.sleep(1.5)
except Exception as e:
print("generate_style_data函数出错!", e)
return data
# 第五步:执行数据生成
all_data = []
print("开始生成温柔风格数据")
data1 = generate_style_data("温柔", 50)
all_data.extend(data1)
print("开始生成毒舌风格数据")
data2 = generate_style_data("毒舌", 50)
all_data.extend(data2)
print(all_data)