（张德丰数学建模读书笔记）

# 3.2 M 文件

### M文件结构

（1）由function起头，后跟的函数名必须与文件名相同
（2）又输入输出变量（变元），可进行变量传递
（3）除非用global声明，程序中的变量均为局部变量，不保存在工作空间中，

（1）函数定义行
（2）H1行
（3）函数帮组文本
（4）函数体
（5）注释

### 脚本文件

Matlab指令类似DOS命令，而脚本文件类似DOS系统中的.bat批处理文件。脚本文件想一个”包“，简化操作。脚本与Matlab会话共享基本工作空间，主要操作工作空间中的数据，也可以在巩固走空间中产生信的数据。

### 实例

1）函数定义行：function y=mean(x,dim)
function为函数定义的关键字，mean为函数名，y为输出变量，x和dim为输入变量.

2) H1行 ：注释行

3）函数帮助文本

4）函数体
5）注释

>> type mean

function y = mean(x,dim,flag,flag2)
%MEAN   Average or mean value. %H1
%   S = MEAN(X) is the mean value of the elements in X if X is a vector. %函数帮组文档
%   For matrices, S is a row vector containing the mean value of each
%   column.
%   For N-D arrays, S is the mean value of the elements along the first
%   array dimension whose size does not equal 1.
%
%   MEAN(X,DIM) takes the mean along the dimension DIM of X.
%
%   S = MEAN(...,TYPE) specifies the type in which the mean is performed,
%   and the type of S. Available options are:
%
%   'double'    -  S has class double for any input X
%   'native'    -  S has the same class as X
%   'default'   -  If X is floating point, that is double or single,
%                  S has the same class as X. If X is not floating point,
%                  S has class double.
%
%   S = MEAN(...,NANFLAG) specifies how NaN (Not-A-Number) values are
%   treated. The default is 'includenan':
%
%   'includenan' - the mean of a vector containing NaN values is also NaN.
%   'omitnan'    - the mean of a vector containing NaN values is the mean
%                  of all its non-NaN elements. If all elements are NaN,
%                  the result is NaN.
%
%   Example:
%       X = [1 2 3; 3 3 6; 4 6 8; 4 7 7]
%       mean(X,1)
%       mean(X,2)
%
%   Class support for input X:
%      float: double, single
%      integer: uint8, int8, uint16, int16, uint32,
%               int32, uint64, int64
%

%   Copyright 1984-2015 The MathWorks, Inc.

isDimSet = nargin > 1 && ~ischar(dim) && ~(isstring(dim) && isscalar(dim));
isFlag2Set = nargin >= 4;

if nargin == 1 || (nargin == 2 && isDimSet) %函数主体

flag = 'default';
omitnan = false;

else % nargin >= 3 || (nargin == 2 && ~isDimSet)

if nargin == 2
flag = dim;
elseif nargin == 3
if ~isDimSet
flag2 = dim;
isFlag2Set = true;
end
elseif nargin == 4 && ~isDimSet
error(message('MATLAB:mean:nonNumericSecondInput'));
end

if ~isFlag2Set
flag2 = '';
end

[flag, omitnan] = parseInputs(flag, flag2, isFlag2Set);

end

if ~isDimSet
% preserve backward compatibility with 0x0 empty
if isequal(x,[])
y = sum(x,flag)/0;
return
end

dim = find(size(x)~=1,1);
if isempty(dim), dim = 1; end
end

if ~isobject(x) && isinteger(x)
% accumulation flag may still be partial
isnative = strncmpi(flag, 'native', max(1, strlength(flag)));
if intmin(class(x)) == 0  % unsigned integers
y = sum(x,dim,flag);
if (isnative && all(y(:) < intmax(class(x)))) || ...
(~isnative && all(y(:) <= flintmax))
% no precision lost, can use the sum result
y = y/size(x,dim);
else  % throw away and recompute
y = intmean(x,dim,isnative);
end
else  % signed integers
ypos = sum(max(x,0),dim,flag);
yneg = sum(min(x,0),dim,flag);
if (isnative && all(ypos(:) < intmax(class(x))) && ...
all(yneg(:) > intmin(class(x)))) || ...
(~isnative && all(ypos(:) <= flintmax) && ...
all(yneg(:) >= -flintmax))
% no precision lost, can use the sum result
y = (ypos+yneg)/size(x,dim);
else  % throw away and recompute
y = intmean(x,dim,isnative);
end
end
else
if omitnan

% Compute sum and number of NaNs
m = sum(x, dim, flag, 'omitnan');
nr_nonnan = size(x, dim) - matlab.internal.math.countnan(x, dim);

% Divide by the number of non-NaNs.
y = m ./ nr_nonnan;
else
y = sum(x, dim, flag)/size(x,dim);
end
end

end

function y = intmean(x, dim, isnative)
% compute the mean of integer vector

shift = [dim:ndims(x),1:dim-1];
x = permute(x,shift);

xclass = class(x);
if ~isnative
outclass = 'double';
else
outclass = xclass;
end

if intmin(xclass) == 0
accumclass = 'uint64';
else
accumclass = 'int64';
end
xsiz = size(x);
xlen = cast(xsiz(1),accumclass);

y = zeros([1 xsiz(2:end)],outclass);
ncolumns = prod(xsiz(2:end));
int64input = isa(x,'uint64') || isa(x,'int64');

for iter = 1:ncolumns
xcol = cast(x(:,iter),accumclass);
if int64input
xr = rem(xcol,xlen);
ya = sum((xcol-xr)./xlen,1,'native');
xcol = xr;
else
ya = zeros(accumclass);
end
xcs = cumsum(xcol);
ind = find(xcs == intmax(accumclass) | (xcs == intmin(accumclass) & (xcs < 0)) , 1);

while (~isempty(ind))
remain = rem(xcs(ind-1),xlen);
ya = ya + (xcs(ind-1) - remain)./xlen;
xcol = [remain; xcol(ind:end)];
xcs = cumsum(xcol);
ind = find(xcs == intmax(accumclass) | (xcs == intmin(accumclass) & (xcs < 0)), 1);
end

if ~isnative
remain = rem(xcs(end),xlen);
ya = ya + (xcs(end) - remain)./xlen;
% The latter two conversions to double never lose precision as
% values are less than FLINTMAX. The first conversion may lose
% precision.
y(iter) = double(ya) + double(remain)./double(xlen);
else
y(iter) = cast(ya + xcs(end) ./ xlen, outclass);
end
end
y = ipermute(y,shift);

end

function [flag, omitnan] = parseInputs(flag, flag2, isFlag2Set)
% Process flags, return boolean omitnan and string flag

if isInvalidText(flag)
error(message('MATLAB:mean:invalidFlags'));
end
if isstring(flag)
flag = char(flag);
end
s = strncmpi(flag, {'omitnan', 'includenan'}, max(length(flag), 1));

if ~isFlag2Set
omitnan = s(1);
if any(s)
flag = 'default';
end
else
if isInvalidText(flag2)
error(message('MATLAB:mean:invalidFlags'));
end
if isstring(flag2)
flag2 = char(flag2);
end
s2 = strncmpi(flag2, {'omitnan', 'includenan'}, max(length(flag2), 1));

% Make sure one flag is from the set {'omitnan', 'includenan'},
% while the other is from {'default', 'double', 'native'}.
if ~xor( any(s), any(s2) )
error(message('MATLAB:mean:invalidFlags'));
end

if any(s) % flag contains 'includenan' or 'omitnan'
omitnan = s(1);
flag = flag2;
else
omitnan = s2(1);
end
end
end

function tf = isInvalidText(str)
tf = (ischar(str) && ~isrow(str)) || ...
(isstring(str) && ~(isscalar(str) && (strlength(str) > 0)));
end
>> 

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120