如何在Excel中调节折线图和柱形图(组合图)的高低(位置),让图中的折线和柱形不会出现重叠

真的好难过啊,遇到不会的东西,百度还百度不出来的时候真的是无助又生气!最主要的是一个很简单的东西,不常用就忘记了…

话不多说了,我分享出来,不会操作的希望可以被你看到并且帮到你,千万不要笑我哦!

遇到折线和柱形图的组合图的时候,当有数据变化,图就会有相应变化,但是有的时候会出现折线图和柱形图重叠的时候(叠加到一起了部分数据),那么我们想要调节高低的时候应该怎么做呢?

首先:
点击图片,右侧出现+号,点击
在这里插入图片描述
其次:
将已选择的坐标轴取消选中
取消过后再选中坐标轴,(哈哈这个时候是不是会觉得很奇怪,这是什么操作,没看错,你就听我的吧)
这个时候:
删除你不想要的(水平)坐标轴,留一个就好(最基本的那个坐标轴)
图中会出现左右两个垂直坐标轴,右键点击其中一个坐标轴,选中:设置坐标轴格式,excel最右侧就会出现下图设置框
在这里插入图片描述
在边界中设置最小值和最大值即可(边设置边看图中折线图或者柱形图的变化),找到适合的高度。
两个垂直坐标轴操作一样。
最后:
在标签位置处选择:无
在这里插入图片描述
这样的话垂直坐标轴就不会显示在图中了。

至此,折线图和柱形图就不会有重叠,很和谐!

是不是还挺简单的操作hhh,希望可以帮助到你哦!

<think>好的,我需要回答用户关于如何使用Python的matplotlib或seaborn库根据《浙江省2018年鉴》数据绘制折线图柱形图饼形的问题。首先,用户希望得到代码示例,所以我要确保代码正确且符合最佳实践。 首先,处理数据。用户提到的年鉴数据通常是结构化的,可能需要用到Pandas读取处理。因此,我应该先导入必要的库,比如pandas、matplotlib.pyplotseaborn。然后,假设用户的数据格式,可能需要创建一个示例DataFrame来模拟年鉴数据,比如GDP、人口、产业占比等。 接下来是绘制折线图折线图通常用于展示随时间变化的数据。这里可以选择年份作为X轴,GDP作为Y轴。使用matplotlib的plot函数,并添加标题、标签、网格线等。同时,考虑到中文显示的问题,需要设置字体,如引用[4]中提到的方法,解决中文乱码负号显示问题。 然后是柱形图,适合比较不同类别的数值。例如,比较不同产业产值。使用matplotlib的bar函数,设置颜色、标签,并可能调整X轴标签的旋转角度以防止重叠。同样要注意中文显示样式设置。 饼用于显示各部分占比,比如三大产业的比例。使用pie函数,设置百分比、标签、颜色等。这里需要确保标签正确对应数据,并且可能添加例或直接在饼上显示类别名称。 此外,用户提到seaborn库,虽然示例中主要使用了matplotlib,但可以提到seaborn的风格设置,比如使用sns.set_theme()来美化表,如引用[4]中提到的plt.style.use('seaborn')。 需要检查代码是否遵循了用户提供的引用中的建议,比如使用DataFrame.plot.line()(引用[3]),但用户示例中直接使用了plt.plot,可能需要说明两种方法的区别。不过用户明确要求示例代码,所以直接使用matplotlib的API可能更清晰。 最后,确保代码中的注释清晰,解释每一步的作用,并提醒用户根据实际数据调整列名路径。同时,生成相关问题,帮助用户进一步学习,比如数据处理技巧、样式调整其他表类型,参考用户提供的引用内容中的信息,如Plotly的其他表类型(引用[1])或极坐标的绘制(引用[2])。 可能遇到的问题包括数据加载的具体方法,用户可能需要从Excel或CSV读取数据,因此在代码中应包含读取数据的示例,比如pd.read_excel,并处理可能的异常。此外,中文标签的显示问题需要特别注意,引用[4]中的字体设置是必须的步骤。 总结步骤:导入库并设置样式→创建示例数据→绘制折线图→绘制柱形图→绘制饼→生成相关问题。确保每个代码块独立,并添加必要的注释说明。</think>以下是根据《浙江省2018年鉴》数据使用matplotlibseaborn绘制表的完整代码示例,包含数据预处理可视化实现: ```python # 导入库并设置中文显示(关键配置) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.family'] = ['Microsoft Yahei', 'SimHei'] # 设置中文字体 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 sns.set_theme(style="whitegrid") # 设置seaborn主题 # 创建模拟数据(假设数据结构) data = { '年份': [2015, 2016, 2017, 2018], 'GDP(亿元)': [42886, 47251, 51768, 56197], '第一产业占比': [4.3, 4.2, 3.9, 3.7], '第二产业占比': [45.9, 44.9, 43.4, 41.8], '第三产业占比': [49.8, 50.9, 52.7, 54.5] } df = pd.DataFrame(data) ``` **1. 折线图(GDP增长趋势)** ```python plt.figure(figsize=(10,6)) plt.plot(df['年份'], df['GDP(亿元)'], marker='o', linestyle='--', color='#2C7BB6', linewidth=2) plt.title('浙江省GDP年度发展趋势(2015-2018)', fontsize=14) plt.xlabel('年份', fontsize=12) plt.ylabel('GDP(亿元)', fontsize=12) plt.xticks(df['年份']) plt.grid(True, alpha=0.3) plt.tight_layout() plt.show() ``` **2. 柱形图(三次产业占比对比)** ```python # 数据重塑为长格式 df_melt = df.melt(id_vars='年份', value_vars=['第一产业占比', '第二产业占比', '第三产业占比'], var_name='产业类型', value_name='占比') plt.figure(figsize=(10,6)) sns.barplot(x='年份', y='占比', hue='产业类型', data=df_melt, palette='viridis') plt.title('三次产业占比年度对比(2015-2018)', fontsize=14) plt.ylabel('占比(%)') plt.legend(title='产业类型', bbox_to_anchor=(1.05, 1)) plt.tight_layout() plt.show() ``` **3. 饼(2018年产业结构)** ```python # 提取2018年数据 year2018 = df[df['年份'] == 2018].iloc[0] plt.figure(figsize=(8,8)) patches, texts, autotexts = plt.pie( [year2018['第一产业占比'], year2018['第二产业占比'], year2018['第三产业占比']], labels=['第一产业', '第二产业', '第三产业'], colors=['#4C72B0','#55A868','#C44E52'], autopct='%1.1f%%', startangle=90, explode=(0.05, 0, 0) ) # 设置百分比字体样式 for autotext in autotexts: autotext.set_color('white') autotext.set_fontsize(12) plt.title('2018年浙江省产业结构分布', fontsize=14) plt.show() ``` **实施要点说明:** 1. 数据准备阶段使用`pd.melt()`将宽格式转换为长格式,便于绘制分组柱状 2. 颜色方案使用seaborn调色板HEX颜色码保证专业视觉呈现 3. 饼通过`explode`参数突出显示第一产业 4. 所有表都包含完整的标注系统格式美化配置 **实际应用时需要:** 1. 将模拟数据替换为真实年鉴数据 2. 调整`pd.read_excel('浙江统计年鉴2018.xlsx')`读取真实数据源 3. 根据实际数据结构修改列名数值字段
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值