粒子群优化算法(PSO)python实践

1 算法介绍和原理

1.1 算法原理

强烈推荐知乎大佬的这篇文章:粒子群优化算法(Particle Swarm Optimization, PSO)的详细解读 - 知乎 (zhihu.com)。该文章详细介绍了算法的原理、算法流程、参数解释和一些Tips,这里就不过多赘述了。

粒子群优化算法(PSO, Particle Swarm Optimization),属于启发式算法中的一种,常用于多目标优化,寻找全局最优解,具有收敛速度快、参数少、算法简单的优点。

算法流程图如下(图片来自这篇文章):

img

1.2 更新公式

1.2.1 速度更新公式

v i d k + 1 = ω v i d k + c 1 r 1 ( p i d ,  pbest  k − x i d k ) + c 2 r 2 ( p d ,  gbest  k − x i d k ) v_{i d}^{k+1}=\omega v_{i d}^k+c_1 r_1\left(p_{i d, \text { pbest }}^k-x_{i d}^k\right)+c_2 r_2\left(p_{d, \text { gbest }}^k-x_{i d}^k\right) vidk+1=ωvidk+c1r1(pid, pbest kxidk)+c2r2(pd, gbest kxidk)

v i d k + 1 v_{i d}^{k+1} vidk+1 —— 粒子 i i i 在第 k k k 次迭代中第 d d d 维的速度向量。

p i d ,  pbest  k p_{i d, \text { pbest }}^k pid, pbest k —— 粒子 i i i 在第 k k k 次迭代中第 d d d 维的历史最优位置。

速度可以看作一个向量,具有大小和方向。即是粒子下一轮迭代移动的距离和方向。公式分为三部分,第一部分为惯性项,由该粒子的当前速度和惯性权重 ω \omega ω 组成。第二部分为认知项,即是粒子当前位置和自身历史最优位置间的距离和方向。 第三部分为社会项,即是粒子当前位置和群体历史最优位置间的距离和方向。

对于更新速度的方向,等于三部分向量和向量的方向。

1.2.2 位置更新公式

x i d k + 1 = x i d k + v i d k + 1 x_{i d}^{k+1}=x_{i d}^{k}+v_{i d}^{k+1} xidk+1=xidk+vidk+1

点加向量等于点

大致掌握算法原理后,直接上手代码。

2 代码实现

示例问题:

求解如下函数的极小值
y = x 1 e x 2 + x 3 s i n x 2 + x 4 x 5 y=x_1e^{x_2}+x_3sinx_2+x_4x_5 y=x1ex2+x3sinx2+x4x5
每个变量的取值都在(1,25)。

首先是定义一个求解类及其初始化方法。

class PSO:

    def __init__(self, D, N, M, p_low, p_up, v_low, v_high, w = 1., c1 = 2., c2 = 2.):
        self.w = w  # 惯性权值
        self.c1 = c1  # 个体学习因子
        self.c2 = c2  # 群体学习因子
        self.D = D  # 粒子维度
        self.N = N  # 粒子群规模,初始化种群个数
        self.M = M  # 最大迭代次数
        self.p_range = [p_low, p_up]  # 粒子位置的约束范围
        self.v_range = [v_low, v_high]  # 粒子速度的约束范围
        self.x = np.zeros((self.N, self.D))  # 所有粒子的位置
        self.v = np.zeros((self.N, self.D))  # 所有粒子的速度
        self.p_best = np.zeros((self.N, self.D))  # 每个粒子的最优位置
        self.g_best = np.zeros((1, self.D))[0]  # 种群(全局)的最优位置
        self.p_bestFit = np.zeros(self.N)  # 每个粒子的最优适应值
        self.g_bestFit = float('Inf')  # float('-Inf'),始化种群(全局)的最优适应值,由于求极小值,故初始值给大,向下收敛,这里默认优化问题中只有一个全局最优解

        # 初始化所有个体和全局信息
        for i in range(self.N):
            for j in range(self.D):
                self.x[i][j] = random.uniform(self.p_range[0][j], self.p_range[1][j])
                self.v[i][j] = random.uniform(self.v_range[0], self.v_range[1])
            self.p_best[i] = self.x[i]  # 保存个体历史最优位置,初始默认第0代为最优
            fit = self.fitness(self.p_best[i])
            self.p_bestFit[i] = fit  # 保存个体历史最优适应值
            if fit < self.g_bestFit:  # 寻找并保存全局最优位置和适应值
                self.g_best = self.p_best[i]
                self.g_bestFit = fit

然后定义适应度计算函数,也就是我们要寻优的对象。

def fitness(x):
    """
    根据粒子位置计算适应值,可根据问题情况自定义
    """
    return x[0] * np.exp(x[1]) + x[2] * np.sin(x[1]) + x[3] * x[4]

定义每次迭代的更新函数。

def update(self):
    for i in range(self.N):
        # 更新速度(核心公式)
        self.v[i] = self.w * self.v[i] + self.c1 * random.uniform(0, 1) * (
                self.p_best[i] - self.x[i]) + self.c2 * random.uniform(0, 1) * (self.g_best - self.x[i])
        # 速度限制
        for j in range(self.D):
            if self.v[i][j] < self.v_range[0]:
                self.v[i][j] = self.v_range[0]
            if self.v[i][j] > self.v_range[1]:
                self.v[i][j] = self.v_range[1]
        # 更新位置
        self.x[i] = self.x[i] + self.v[i]
        # 位置限制
        for j in range(self.D):
            if self.x[i][j] < self.p_range[0][j]:
                self.x[i][j] = self.p_range[0][j]
            if self.x[i][j] > self.p_range[1][j]:
                self.x[i][j] = self.p_range[1][j]
        # 更新个体和全局历史最优位置及适应值
        _fit = self.fitness(self.x[i])
        if _fit < self.p_bestFit[i]:
            self.p_best[i] = self.x[i]
            self.p_bestFit[i] = _fit
        if _fit < self.g_bestFit:
            self.g_best = self.x[i]
            self.g_bestFit = _fit

其中主要完成每轮迭代中单个粒子位置和速度,历史最优位置和最优适应度的更新,以及群体(全局)的最优位置和最优适应度的更新。

最后,便是主要函数的实现。

def pso(self, draw = 1):
    best_fit = []  # 记录每轮迭代的最佳适应度,用于绘图
    w_range = None
    if isinstance(self.w, tuple):
        w_range = self.w[1] - self.w[0]
        self.w = self.w[1]
    time_start = time.time()  # 记录迭代寻优开始时间
    for i in range(self.M):
        self.update()  # 更新主要参数和信息
        if w_range:
            self.w -= w_range / self.M  # 惯性权重线性递减
        print("\rIter: {:d}/{:d} fitness: {:.4f} ".format(i, self.M, self.g_bestFit, end = '\n'))
        best_fit.append(self.g_bestFit.copy())
    time_end = time.time()  # 记录迭代寻优结束时间
    print(f'Algorithm takes {time_end - time_start} seconds')  # 打印算法总运行时间,单位为秒/s
    if draw:
        plt.figure()
        plt.plot([i for i in range(self.M)], best_fit)
        plt.xlabel("iter")
        plt.ylabel("fitness")
        plt.title("Iter process")
        plt.show()

测试代码如下。

if __name__ == '__main__':
    low = [1, 1, 1, 1, 1]
    up = [25, 25, 25, 25, 25]
    pso = PSO(5, 100, 50, low, up, -1, 1, w = 0.9)
    pso.pso()

测试结果如下图所示。

Figure_21

...
Iter: 47/50 fitness: 4.5598 
Iter: 48/50 fitness: 4.5598 
Iter: 49/50 fitness: 4.5598 
Algorithm takes 0.1444549560546875 seconds

可以看到在第30轮就已经完全收敛了,且函数在求解空间中的极小值为4.5598。

3 总结

  • 动态的惯性权重 [ 1 ] ^{[1]} [1]

    image-20221108142132141

    w_range = self.w[1] - self.w[0]
    self.w = self.w[1]
    self.w -= w_range / self.M  # 惯性权重线性递减
    
  • fitness变化逻辑

    fitness是适应度函数值,通常问题是寻找解空间内的粒子,使得该粒子所代表的解的fitness向下或向上收敛于某一定值。对于不同收敛方向,个体和全局最优fitness一般初始化赋值无穷大或者无穷小float('Inf')/float('-Inf')。并且在判断更新最优适应值时也应当注意大小于符号。

  • 程序复用

    对于上面的PSO类代码,不同多元寻优问题均可通过重写类中的fitness函数实现。或者定义self.fitness_function属性进行外部函数名传参赋值。

参考

[1] 粒子群优化算法(Particle Swarm Optimization, PSO)的详细解读 - 知乎 (zhihu.com)

[2] 粒子群算法(PSO)的Python实现(求解多元函数的极值)_Cyril_KI的博客-CSDN博客_pso算法python

GAPSO(Group Asynchronous Parallel Surrogate Optimization)是一种基于群体异步并行的代理模型优化算法,主要应用于解决多目标优化问题。该算法将群体划分为若干个异步并行的子群体,并使用代理模型对每个子群体进行优化搜索。 GAPSO的基本思想是通过异步并行的方式对群体进行拆分,每个子群体独立执行搜索,并使用代理模型来引导搜索过程。其中,代理模型是通过对已知优化结果建立的模型进行预测,从而加速搜索过程。具体来说,每个子群体中的个体根据代理模型的预测结果进行搜索,而不是直接评估真实的目标函数值。这样一来,子群体可以在并行执行的过程中不断更新代理模型,并根据模型的预测结果进行搜索和交流。 在GAPSO算法中,个体之间可通过信息交流来提高搜索效率。每个子群体根据自己的搜索结果更新代理模型,同时将最优解通过信息交流的方式共享给其他子群体。这样,每个子群体都能受益于其他子群体找到的最优解,从而加速整体的优化搜索过程。 总的来说,GAPSO算法通过将群体划分为子群体并运用代理模型对每个子群体进行异步并行的优化搜索,实现了对多目标优化问题的高效求解。它能够通过信息交流和代理模型的引导来提高搜索效率,具有较好的收敛性和搜索能力。在实际应用中,GAPSO算法已经被广泛地应用于各类复杂的工程和科学问题的求解中。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值