DP百题进度:3/100
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2287
2287: 【POJ Challenge】消失之物
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 794 Solved: 447
[ Submit][ Status][ Discuss]
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
3 2
1 1 2
1 1 2
Sample Output
11
11
21
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
Source
显然暴力背包dp是行不通的。先处理出填满容量为j的背包的方案数。
对于丢失的每个物品i,如果当前背包的容量j<w[i]那么肯定不会选到物品i。ans[i][j]=dp[j]
如果j>=w[i],那么方案数=总方案数-用了i物品的方案数,即用剩下物品填满j-w[i]的方案数。ans[i][j]=dp[j]-ans[i][j-w[i]]。
j=0时方案数为1。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int read()
{
char c;int sum=0,f=1;c=getchar();
while(c<'0' || c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0' && c<='9'){sum=sum*10+c-'0';c=getchar();}
return sum*f;
}
int n,m;
int w[2005];
int dp[2005];
int ans[2005][2005];
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
w[i]=read();
dp[0]=1;
for(int i=1;i<=n;i++)
for(int j=m;j>=w[i];j--)
{
dp[j]+=dp[j-w[i]];
dp[j]%=10;
}
for(int i=1;i<=n;i++)
{
ans[i][0]=1;
for(int j=1;j<=m;j++)
{
if(j>=w[i])
ans[i][j]=(dp[j]-ans[i][j-w[i]]+10)%10;
else
ans[i][j]=dp[j];
printf("%d",ans[i][j]);
}
printf("\n");
}
return 0;
}