bzoj2287【POJ Challenge】消失之物 背包dp

DP百题进度:3/100

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2287

2287: 【POJ Challenge】消失之物

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 794   Solved: 447
[ Submit][ Status][ Discuss]

Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

 

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

 

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

Source

显然暴力背包dp是行不通的。

先处理出填满容量为j的背包的方案数。

对于丢失的每个物品i,如果当前背包的容量j<w[i]那么肯定不会选到物品i。ans[i][j]=dp[j]

如果j>=w[i],那么方案数=总方案数-用了i物品的方案数,即用剩下物品填满j-w[i]的方案数。ans[i][j]=dp[j]-ans[i][j-w[i]]。

j=0时方案数为1。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int read()
{
	char c;int sum=0,f=1;c=getchar();
	while(c<'0' || c>'9'){if(c=='-')f=-1;c=getchar();}
	while(c>='0' && c<='9'){sum=sum*10+c-'0';c=getchar();}
	return sum*f;
}
int n,m;
int w[2005];
int dp[2005];
int ans[2005][2005];
int main()
{
	n=read();m=read();
	for(int i=1;i<=n;i++)
	w[i]=read();
	dp[0]=1;
	for(int i=1;i<=n;i++)
	for(int j=m;j>=w[i];j--)
	{
		dp[j]+=dp[j-w[i]];
		dp[j]%=10;
	}
	for(int i=1;i<=n;i++)
	{
		ans[i][0]=1;
		for(int j=1;j<=m;j++)
		{
			if(j>=w[i])
			ans[i][j]=(dp[j]-ans[i][j-w[i]]+10)%10;
			else
			ans[i][j]=dp[j];
			printf("%d",ans[i][j]);
		}
		printf("\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值