洛谷 P3373 【模板】线段树 2

D e s c r i p t i o n Description Description

如题,已知一个数列,有下列三种操作:
操作1:将某区间每一个数乘上 x x x
操作2:将某区间每一个数加上 x x x
操作3:查询某区间每一个数的和

S o l u t i o n Solution Solution

线段树模板
【模板】线段树 1差不多
只不过操作2要处理一下
有两个下传标志 a d d ,   m u l add,\ mul add, mul

区间加

对于区间加,每个就直接加就好了,也就是 : : :
a [ n o w ] . a d d   =   ( a [ n o w ] . a d d   +   k )   m o d   p a[now].add\ =\ (a[now].add\ +\ k)\ mod\ p a[now].add = (a[now].add + k) mod p
a [ n o w ] . s u m   =   ( a [ n o w ] . s u m   +   k   ×   ( a [ n o w ] . r   −   a [ n o w ] . l   +   1 ) )   m o d   p a[now].sum\ =\ (a[now].sum\ +\ k\ \times\ (a[now].r\ -\ a[now].l\ +\ 1))\ mod\ p a[now].sum = (a[now].sum + k × (a[now].r  a[now].l + 1)) mod p

区间乘

根据乘法分配律, a d d ,   s u m ,   m u l add,\ sum,\ mul add, sum, mul同时乘 k k k
a [ n o w ] . s u m = ( a [ n o w ] . s u m × k )   m o d   p a[now].sum = (a[now].sum \times k)\ mod\ p a[now].sum=(a[now].sum×k) mod p
a [ n o w ] . m u l = ( a [ n o w ] . m u l × k )   m o d   p a[now].mul = (a[now].mul \times k)\ mod\ p a[now].mul=(a[now].mul×k) mod p
a [ n o w ] . a d d = ( a [ n o w ] . a d d × k )   m o d   p a[now].add = (a[now].add \times k)\ mod\ p a[now].add=(a[now].add×k) mod p

下传

s u m sum sum下传就是子孩子先乘一个 m u l mul mul然后加上 a d d , add, add,因为 a d d add add已经乘过所以直接加就好了
a [ s o n ] . s u m = ( a [ s o n ] . s u m × a [ n o w ] . m u l + a [ n o w ] . a d d × ( a [ s o n ] . r − a [ s o n ] . l + 1 ) )   m o d   p a[son].sum = (a[son].sum \times a[now].mul + a[now].add\times(a[son].r - a[son].l+1))\ mod\ p a[son].sum=(a[son].sum×a[now].mul+a[now].add×(a[son].ra[son].l+1)) mod p
m u l mul mul下传就直接乘
a [ s o n ] . m u l = ( a [ s o n ] . m u l × a [ n o w ] . m u l )   m o d   p a[son].mul = (a[son].mul \times a[now].mul)\ mod\ p a[son].mul=(a[son].mul×a[now].mul) mod p
a d d add add下传和 s u m sum sum相似
a [ s o n ] . a d d = ( a [ s o n ] . a d d × a [ n o w ] . m u l + a [ n o w ] . a d d )   m o d   p a[son].add = (a[son].add \times a[now].mul + a[now].add)\ mod\ p a[son].add=(a[son].add×a[now].mul+a[now].add) mod p

A c c e p t e d   c o d e Accepted\ code Accepted code

#include<cstdio>
#include<iostream>
#define int long long
#define ls (now << 1)
#define rs (now << 1 | 1)
#define mid (a[now].l + a[now].r >> 1)

using namespace std;

const int N = 1e5 + 5;

struct Tree {
	int l, r, add, sum, mul;
}a[N<<2];

int n, q, k, mod;

inline void read(int &f) {
	f = 0; char c = getchar();
	while (!isdigit(c)) c = getchar();
	while (isdigit(c)) f = f * 10 + c - 48, c = getchar();
	return;
}

void build(int now, int l, int r) {
	a[now] = (Tree){l, r, 0, 0, 1};
	if (l == r) {
		read(a[now].sum);
		a[now].sum %= mod;
		return;
	}
	build(ls, l, mid);
	build(rs, mid + 1, r);
	a[now].sum = (a[ls].sum + a[rs].sum) % mod;
}

void pd(int now) {
	a[ls].sum = (a[ls].sum * a[now].mul + a[now].add * (a[ls].r - a[ls].l + 1)) % mod;
	a[rs].sum = (a[rs].sum * a[now].mul + a[now].add * (a[rs].r - a[rs].l + 1)) % mod;
	(a[ls].mul *= a[now].mul) %= mod;
	(a[rs].mul *= a[now].mul) %= mod;
	a[ls].add = (a[ls].add * a[now].mul + a[now].add) % mod;
	a[rs].add = (a[rs].add * a[now].mul + a[now].add) % mod;
	a[now].mul = 1, a[now].add = 0;
}

void mul(int now, int l, int r, int w) {
	if (a[now].l >= l && a[now].r <= r) {
		(a[now].sum *= w) %= mod;
		(a[now].mul *= w) %= mod;
		(a[now].add *= w) %= mod;
		return;
	}
	pd(now);
	if (l <= mid) mul(ls, l, r, w);
	if (r > mid) mul(rs, l, r, w);
	a[now].sum = (a[ls].sum + a[rs].sum) % mod;
	return;
}

void add(int now, int l, int r, int w) {
	if (a[now].l >= l && a[now].r <= r) {
		(a[now].add += w) %= mod;
		(a[now].sum += w * (a[now].r - a[now].l + 1)) %= mod;
		return;
	}
	pd(now);
	if (l <= mid) add(ls, l, r, w);
	if (r > mid) add(rs, l, r, w);
	a[now].sum = (a[ls].sum + a[rs].sum) % mod;
	return;
}

int ask(int now, int l, int r) {
	if (a[now].l >= l && a[now].r <= r)
		return a[now].sum;
	pd(now);
	int sum = 0;
	if (l <= mid) (sum += ask(ls, l, r)) %= mod;
	if (r > mid) (sum += ask(rs, l, r)) %= mod;
	return sum;
}

signed main() {
	read(n), read(q), read(mod);
	build(1, 1, n);
	while (q--) {
		int flag, cl, cr, k;
		read(flag), read(cl), read(cr);
		if (flag == 1) read(k), mul(1, cl, cr, k);
		else if (flag == 2) read(k), add(1, cl, cr, k);
		else printf("%lld\n", ask(1, cl, cr));
	}
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
洛谷P1168题目是关于中位数线段树解法的问题。中位数线段树解法可以通过维护两个堆来实现。一个是大根堆,一个是小根堆。每次插入元素时,根据一定的规则来维护这两个堆,使得大根堆的个数在一定情况下比小根堆多1或者相等。大根堆的最后一个元素即为中位数。具体的规则如下: 1. 如果大根堆和小根堆的个数相等,下一次插入的元素一定插入到大根堆。此时判断小根堆的堆顶是否大于当前元素x,如果是,则将小根堆的堆顶元素插入到大根堆,然后将x压入小根堆;否则直接将x压入大根堆。 2. 如果大根堆和小根堆的个数不相等,按照类似的规则进行操作。 通过以上规则,可以实现在每次插入元素时,维护两个堆的平衡,并且保证大根堆的最后一个元素即为中位数。 这种解法的时间复杂度为O(logN),其中N为序列的长度。 #### 引用[.reference_title] - *1* *2* [中位数(洛谷p1168)(堆/树状数组+二分/线段树+二分)](https://blog.csdn.net/qq_45604735/article/details/114382762)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [洛谷 P1168 中位数(权值线段树,离散化)](https://blog.csdn.net/qq_38232157/article/details/127594230)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值