SMU Summer 2024 Contest Round 7 ABCDG

A Make Equal With Mod

题意:

给出一个数组,可以给出一个不小于2的数K,令数组中的每个数对其进行取模运算,问能否操作至数组中每个数相同

思路:

因为K不能等于1,所以可以分成数组中 有1 和 无1 两种情况

 对于无1的情况,可以从最大数开始对其自身取模变为0,易得最后数组中所有数都将为0,一定满足题意

对于有1的情况,若数组可满足题意,则最后全为1,所以操纵策略为从最大数开始对 自身-1 的数取模,此时就可以发现,若出现了两个相差1的数,则一定会出现0,故无法达成条件

将数组排序之后对三种情况判断即可

AC代码:

#include<bits/stdc++.h>
using namespace std;

int t,n;
int arr[100005];

void solve(){
    cin>>n;
        for(int i=0;i<n;i++){
            cin>>arr[i];
        }
        sort(arr,arr+n);
        int f1 = true;
        int f2 = true;
        int f3 = false;
        if(arr[0]==1) f2 = false;
        for(int i=1;i<n;i++){
            if(arr[i]!=arr[i-1]){
                f1 = false;
                //break;
            }
            if(arr[i]==1){
                f2 = false;
            }
            if((arr[i]-arr[i-1])==1){
                f3 = true;
            }
        }
        if(f1){
            //cout<<"1: ";
            cout<<"YES"<<endl;
            return ;
        }
        if(f2){
            //cout<<"2: ";
            cout<<"YES"<<endl;
            return ;
        }
        if(!f2 && f3){
            //cout<<"3: "<<endl;
            cout<<"NO"<<endl;
            return ;
        }
        if(!f2 && !f3){
            cout<<"YES"<<endl;
            return ;
        }
        
}

int main(){
    cin>>t;
    while(t--){
        solve();
    }
    return 0;
}

B Game on Ranges

题意 :

一个数组中包含一个元素(l,r) (范围),可以选取范围中的一个数d,令(l,r)变为(l,d-1) (d+1,r)当d-1>=l(或d+1>=r)时,其消失,现在题目中给出了每次选取d的范围,要求反推d

思路:

对于给出的范围(x,x),据题意可知d=x,也就只需从小范围往大范围推导d,每次推导出来的d进行标记,此时大范围中可用的d就越来越少了,即可推出答案

AC代码:

#include<bits/stdc++.h>

using namespace std;

#define ll long long
#define maxn 1003
struct interval{
	ll l,r,num;
}a[maxn],b[maxn];

ll t,n,ans[maxn];

bool cmp(interval a,interval b)
{
	if(a.l!=b.l)return a.l<b.l;
	else return a.r>b.r;
}

int main()
{
	cin>>t;
	while(t--){
		cin>>n;
		for(int i=1;i<=n;i++)
		{
			cin>>a[i].l>>a[i].r; 
			a[i].num=i;
			b[i]=a[i];
		}
		sort(a+1,a+1+n,cmp);
		
		for(int i=1;i<=n;i++)
		{
			if(a[i].l==a[i+1].l&&i!=n)ans[a[i].num]=a[i+1].r+1;
			else if(a[i].r==a[i+1].r&&i!=n)ans[a[i].num]=a[i+1].l-1;
			else if(a[i].l==a[i].r)ans[a[i].num]=a[i].l;
		}
		for(int i=1;i<=n;i++) cout<<b[i].l<<" "<<b[i].r<<" "<<ans[i]<<endl;
        
        cout<<endl;
	}
	return 0;
}

C Buy an Integer

 思路:注意答案最大到1e9,分析题目给出的函数发现时单增,所以采用二分法就好

AC代码:

#include<bits/stdc++.h>
using namespace std;

#define int long long

int a,b,x;
int t;

int weishu(int xx){
    int cnt = 0;
    while(xx){
        cnt++;
        xx/=10;
    }
    return cnt;
}

void solve(){
    cin>>a>>b>>x;
    // int mai = x/a; //cout<<"max: "<<mai<<endl;
    // if(mai == 0){cout<<0; return ;}
    // if(1000000000*a+b*9<=x){cout<<1000000000; return ;}
    int l = 1,r = 1000000000,mid;
    while(l<=r){
        
        mid=(l+r)>>1;
        if(mid*a+weishu(mid)*b>x) r=mid-1;
        else l=mid+1;
    }
    cout<<r;
}

signed main(){
    t=1;
    while(t--){
        solve();
    }
    return 0;
}

D String Formation

思路:记录翻转的次数cnt,根据(cnt%2)来改变操作,最后也是依此决定是否翻转一次

AC代码:

#include<bits/stdc++.h>
using namespace std;

int main(){
    string a;
    cin>>a;
    int t;
    cin>>t;
    int cnt=0;
    while(t--){
        int x1;
        cin>>x1;
        if(x1 == 1){
            cnt++;
        }
        else{
            int x2; string add;
            cin>>x2;
            cin>>add;
            if(cnt%2){
                if(x2==1) a += add;//cout<<"# "<<a<<endl;
                else a = add+a;//cout<<"# "<<a<<endl;
            }
            else{
                if(x2==1) a = add+a;// cout<<"# "<<a<<endl;
                else a += add;// cout<<"# "<<a<<endl;
            }
        }
    }
    if(cnt%2){
       reverse(a.begin(),a.end());
        cout<<a<<endl;
    }
    else{
        cout<<a<<endl;
    }
    return 0;
}

G String Cards

[ABC225F] String Cards - 洛谷

思路:还是要写cmp函数,但要注意避免(2 2 ba b)这种情况了 单纯的写 return s1<s2; 会返回bba而不是bab, 应该组合起来判断 return s1+s2<s2+s1; 排序之后按倒序进行dp,最后输出dp[1][k]即可

AC代码:

#include<bits/stdc++.h>
using namespace std;

#define int long long

int n,k,t;
string srr[55];
string dp[55][55];

bool cmp(string s1,string s2){
    return s1+s2<s2+s1;
}

void solve(){
    cin>>n>>k;
    for(int i=1;i<=n;i++) cin>>srr[i];
    sort(srr+1,srr+1+n,cmp);
    for(int i=n;i>0;i--){
        for(int j=1;j<=n-i+1;j++){
            if(dp[i+1][j]!="") dp[i][j]=min(dp[i+1][j],srr[i]+dp[i+1][j-1]);
            else dp[i][j]=srr[i]+dp[i+1][j-1]; 
        }
    }
    cout<<dp[1][k]<<endl;
}

signed main(){
    t=1;
    while(t--){
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值