Diverse and nonlinear influences of built environment factors on the spread of COVID-19 across towns

1.论文概述

文章主要是分析了疫情爆发初始阶段,疫情发展的时空特性,之后分析了许多建成环境、设施设备对疫情传播的影响。
下面介绍下自变量和因变量,通过自变量和因变量也就可以对这篇文章做很好的理解了。
因变量选取了两个,一个是RCIC,也就是累计确诊人数比例,第二个是CVIC,也就是确诊人数变化,其中RCIC反映的是疫情传播和发展情况,CVIC反映的是政策效力,CVIC越小,政策也就越强。
自变量选取详见下图,意思可以简单的从名字来解读,具体不展开叙述了。
在这里插入图片描述

2.方法论

2.1 Bivariate local indicators of spatial association (BiLISA)

文章第一个分析就是对RCIC和CVIC进行BiLISA分析。Bivariate local indicators of spatial association分析如下:
在这里插入图片描述
Z i , k Z_{i,k} Zi,k Z j , l Z_{j,l} Zj,l 分别是对变量做标准化,关键就是第一个公式了,其中 Z j , l Z_{j,l} Zj,l是区域j的变量l, Z i , k Z_{i,k} Zi,k是区域i的变量k,l是k的空间邻居,论文里的邻居使用的方式是k近邻。因此公式一其实反映的就是区域i和它的周围领域的情况,计算的时候把 Z I , k Z_{I,k} ZI,k ∑ j = 1 N w i j Z j , l \sum_{j=1}^Nw_{ij}Z_{j,l} j=1NwijZj,l分别计算出来,然后作为两个坐标绘图,那么会出现4种情况,第一个高高聚类,也就是两者都很大,此时I很大,第二个低低聚类,也就是两个都很小,此时I很大,第三个是低高聚类,第四个是高低聚类,这四种模式对应的物理含义也十分容易理解,分别做分析解读就行了。
在本研究中主要就是对RCIC和CVIC做了BiLISA分析,然后解读了一下四种情况。

2.2 随机森林

随机森林模型不做过多解释了,文章主要就是分别以两个因变量作为模型的因变量,然后使用所有的自变量对因变量训练随机森林模型,进行特征重要性排序,选择前8重要的特征进行Partial dependence plot ,也就是分析自变量对因变量会产生怎么样的影响。Partial dependence plots如下所示。Partial dependence plots见该链接的解释即可。可以在看下这篇文章的解释。论文就是对Partial dependence plots做了一些分析。
在这里插入图片描述

3.数据资源

文章给了很多数据源,比如下面几个都是很有用的。
1. 2015年中国土地利用现状遥感监测数据
2. 百度迁徙数据

参考文献

[1] Ma S , Li S , Zhang J . Diverse and nonlinear influences of built environment factors on COVID-19 spread across townships in China at its initial stage[J]. Scientific Reports, 2021, 11(1).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值