背包问题

背包问题

#include <bits/stdc++.h>
using namespace std;
int main()
{
    // 0 1 背包   每个物品只有一个 而且状态之有 取 或者 不取 
    主要方程: f[i][v]=max {f[i-1][v],f[i-1][v-c[i]]+w[i]}
    一维:
                 for i=1..N
                    for v=V..0
                    f[v]=max {f[v],f[v-c[i]]+w[i]};
        如果背包要求装满: 初值化:
        for(int i=0;i<=V;i++)
         f[i]=-inf;
         f[0]=0;
        如果不要求装满:初值化:
        for(int i=0;i<=V;i++)
         f[i]=0;


 完全 背包 每个物品可以去无限次
    与它相关的策略已并非取或不取两种,而是有取 0 件、取 1 件、取 2 件……等很多种 
    所以就可以再来一个 关于 k 的循环 
    for(int k=1;k*c[i]<=v;k++) 
    f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

    还有一个简单的优化的思想:
    若两件物品 i、j 满足 c[i]<=c[j]且w[i]>=w[j],则将物品 j 去掉,不用考虑。这个优化的正确性显然 

    既然 01 背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为 01 背包问
    题来解。最简单的想法是,考虑到第 i 种物品最多选 V/c[i]件,于是可以把第 i 种物品转化
    为 V/c[i]件费用及价值均不变的物品,然后求解这个 01 背包问题。
    就是全部变成 0 1 背包就好了!
    更高效的转化方法是:把第 i 种物品拆成费用为 c[i]*2^k、价值为 w[i]*2^k 的若干件物品,
    其 中 k 满足 c[i]*2^k<=V。这是二进制的思想,因为不管最优策略选几件第 i 种物品,总可
    以表示成若干个 2^k 件物品的和。这样比把每种物品拆成 O(log(V/c[i]))件物品,是一个很大
    的改进。

    for i=1..N
     for v=0..V
      f[v]=max{f[v],f[v-cost]+weight}

 多重 背包 就是数量有有限个数
     基本思想:
     这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为
     对于第 i 种物品有 n[i]+1 种策略:取 0 件,取 1 件……取 n[i]件。令 f[i][v]       表示前 i 种物品恰
     放入一个容量为 v 的背包的最大权值,则有状态转移方程:
     f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]  |  0<=k<=n[i]}

     二进制思想:
     我们考虑把第 i 种物品换成若干件物品,使得原问题中第 i 种物品可取的每种策
     略——取 0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过 n[i]件的策略必
     不能出现。
     方法是:将第 i 种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值
     均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且 k
     是满足 n[i]-2^k+1>0 的最大整数。例如,如果 n[i]为 13,就将这种物品分成系数分别为 1,2,4,6
     的 四件物品 

     所以就是一个 二进制分配的一个过程 !! 

}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值