文章目录
前言
本文主要工作为 翻译 以及 解读 CAPM 原文[1],旨在帮助自己与大家更好的理解 CAPM 原文,如有错误,请大家指出!感激不尽!
[1] W. F. Sharpe, “CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK*,” The Journal of Finance, vol. 19, no. 3, pp. 425–442, Sep. 1964, doi: 10.1111/j.1540-6261.1964.tb02865.x.
文章结构与摘要
I. INTRODUCTION
II. OPTIMAL INVESTMENT POLICY FOR THE INDIVIDUAL
III. EQUILIBRIUMIN THE CAPITALMARKET
IV. THE PRICES OF CAPITALASSETS
论文正文与解读
I Introduction
解读: 在当时markowitz提出了 资产投资组合理论,但还没有人确切的描述价格与风险之间的关系、风险的各个组成部分,作者尝试解决这个问题,提出一个 风险条件下的市场均衡理论 来为风险和价格的关系研究指明方向。
困扰了想要预测资本市场的人的一个问题是缺乏一套处理 在风险条件下的有作用的 微观积极学理论体系,即便 可以从 在不确定条件下的传统投资模型中获得许多有用的见解,但是金融交易中无处不在的风险还是迫使从业者采用 价格行为模型,而这些模型都是缺乏实证的“断言”。
目前,没有理论描述 风险溢价是如何从 投资者偏好的影响与资产属性等因素中 形成的。缺乏这种理论,我们很难赋予一个资产的价格和他的风险真正的意义。 通过分散化,一些 资产内在的风险可以被避免,使得总投资的风险与单个资产的价格相关程度减少。不幸的是,很少有人说到具体的风险成分是相关的。
标准模型(normative models)处理 风险条件下的 资产选择
- Markowitz、Von Neumann、Morgenstern 提出了一种基于期望效用最大化分析的理论并且提出了一种 投资组合选择的通用解决方案。
- Tobin 说明了在特定条件下,Markowitz‘s 的模型 暗示了 投资组合选择的过程可以 分为两个阶段: ①首先确定一个特定的风险资产的最优组合②确定该组合和一个无风险资产的资金配比(funds allocation)
- Hicks 使用了一个与Tobin类似的方法 获得了关于个体投资者行为的相关结论,他使用了一个 在投资组合过程可以被一分为二的情况下的本质进行了更加清晰的处理。
尽管这些标准模型都被引用为 ”投资者行为模型“,没有人曾经尝试去建立一个 风险条件下资产价格的市场均衡理论 (a market equilibriumtheory of asset prices under conditions of risk) 。我们将会证明,这样的理论与先前传统金融模型的条件断言是一致的,更重要的是,这样的理论为资产的价格和不同部分的风险关系提供了理论解释,因此可以用来进行资产价格的预测。
第二部分描述个体投资者在风险条件下的投资行为,第三个部分描述资本市场的均衡条件并且衍生出 资本投资线 (capital market line),第四部分描述价格和不同风险的关系。
II. OPTIMAL INVESTMENT POLICY FOR THE INDIVIDUAL
本章讨论传统的 马克维茨 资产定价理论 在 收益率和标准差二维平面上,来分析投资者和市场的需要
投资者的需求由 投资者偏好和效益函数决定,我们称相同投资者的相同效益曲线为无差异曲线(indifference curve)
市场的供给 由 所有资产组合的风险与收益 与 无风险资产的收益决定,我们称市场的最优供给为 投资机会曲线(investment opportunity curve)
首先讨论纯风险资产组合的表现与选择,其次讨论 这种纯风险资产组合 和 无风险资产的 组合 的表现与选择,整体方法符合之前提到的 投资两步法。
The Investor’s Preference Function
假设每个投资者从概率角度看待任何投资的结果;也就是说,他用概率分布来考虑可能的结果。
这里隐含着一个假设,即 所有投资者对于收益的分布是一样的,在现实中显然不是如此
在评估一项特定投资的可行程度时,他只根据这个分布的两个参数——期望值和标准差——来进行评估,这可以用总效用函数的形式表示:
U = f ( E w , σ w ) \begin{equation} \mathrm{U}=\mathrm{f}\left(\mathrm{E}_{\mathrm{w}}, \sigma_{\mathrm{w}}\right) \end{equation} U=f(Ew,σw)
- w w w 代表投入的总金额
- E E E 代表期望的收益
- σ \sigma σ 代表收益的标准差
为了简化分析,我们假设投资者已决定将其现有财富的给定金额 W I W_I WI用于投资。让 W t W_t Wt 为他的最终财富, R R R为他的投资收益率
R ≡ W t − W i W i \mathrm{R} \equiv \frac{\mathrm{W}_{\mathrm{t}}-\mathrm{W}_{\mathrm{i}}}{\mathrm{W}_{\mathrm{i}}} R≡WiWt−Wi
有
W t = R W i + W i \mathrm{W}_{\mathrm{t}}=\mathrm{R} \mathrm{W}_{\mathrm{i}}+\mathrm{W}_{\mathrm{i}} Wt=RWi+Wi
显然,这种关系使得我们可以使用 R 来表达 投资者 效益函数 U U U :
U = g ( E R , σ R ) \mathrm{U}=\mathrm{g}\left(\mathrm{E}_{\mathrm{R}}, \sigma_{\mathrm{R}}\right) U=g(ER,σR)
这里的关系指的是 财富的变化只和 R 有关,显然,我们关心的就是 R,即财富的变化
现代金融理论家和CFA协会对于一个具有预期收益E®和收益方差σ2的投资组合使用如下效用得分:
U = E ( r ) − 1 2 A σ 2 U=E(r)-\frac{1}{2} A \sigma^2 U=E(r)−21Aσ2
A 代表投资者的风险厌恶程度,是一个常数,例如可以通过回答几个问题得到一组整数来表示这个值
相同偏好的投资者具有相同的 效用
相同的投资者效益U,在 E R E_R ER , σ R \sigma_R σR 平面上 表示一组曲线,这个曲线被称为 无差异曲线(indifference curve)
,如图2(Figure 2 中的虚线所示)
无差异曲线表示了 投资者的需求曲线,在有相应需求时,还需要市场具有相应供给,下一小节就描述了这个问题
现在的习惯画法是把 E 画在y轴,请读者注意
The Investment opportunity curve
投资者行为模型决定了投资者会选取最大化他的效益的那个投资机会,每个投资机会都由 E R E_R ER , σ R \sigma_R σR 平面上的一个点表示,假设 Figure 2 中阴影表示所有的投资机会,虚线部分表示投资者的需求曲线(无差异曲线)投资者将从所有可能的计划中选择一个将他置于代表最高效益水平(F点)的无差异曲线上的投资计划。
决策可以分为两个阶段:首先,找到一组有效的投资计划,然后从这组计划中选择一个。一个计划被认为是有效的(且仅当)没有其他选择:(1)相同的 E R E_R ER 和较低的 σ R \sigma_R σR,(2)相同的 σ R \sigma_R σR和较高的 E R E_R ER ,或(3)较高的 E R E_R ER 和较低的 σ R \sigma_R σR。因此,投资Z是无效的,因为投资B、C和D(以及其他)效益更高。被选择的计划必须位于右下角边界(AFBDCX)-投资机会曲线(Investment opportunity curve)。
为了理解这条曲线的本质,考虑两个投资计划a和B,每个都包括一个或多个资产。其预测的期望值和收益率标准差如图3所示。
如果投资者投资计划总投资比例 α \alpha α的部分投资 A ,剩余部分(1- α \alpha α) 投资B,则组合的预期收益率将介于两个计划的预期收益率之间:
E R c = α E R a + ( 1 − α ) E R b \mathrm{E}_{\mathrm{Rc}}=\alpha \mathrm{E}_{\mathrm{Ra}}+(1-\alpha) \mathrm{E}_{\mathrm{Rb}} ERc=αERa+(1−α)ERb
σ R c = α 2 σ R a 2 + ( 1 − α ) 2 σ R b 2 + 2 r a b α ( 1 − α ) σ R a σ R b \sigma_{\mathrm{Rc}}=\sqrt{\alpha^2{\sigma_{\mathrm{Ra}}}^2+(1-\alpha)^2 \sigma_{\mathrm{Rb}}{ }^2+2 \mathrm{r}_{\mathrm{ab}} \alpha(1-\alpha) \sigma_{\mathrm{Ra}} \sigma_{\mathrm{Rb}}} σRc=α2σRa2+(1−α)2σRb2+2rabα(1−α)σRaσRb
- r a b r_{ab} rab : 表示 资产 A B 的相关系数
- 当 r a b = 1 r_{ab} = 1 rab=1 时,资产完全正相关,此时组合的可能变成了一条直线,收益率和标准差都变成了和比例相关的线性曲线
- 当 r a b = 0 r_{ab} = 0 rab=0 时,资产完全不相关(完全独立),在完全独立的情况下,AZB显示了这样的曲线
- 当 r a b = − 1 r_{ab} = -1 rab=−1 时,资产完全负相关,轨迹更是u型的
- 当 r a b r_{ab} rab 时,如果它们不是完全正相关,则任何组合的标准偏差必须小于完全相关(因为 r a b r_{ab} rab会更小);因此,这些组合必须位于AB线以下的曲线上
投资机会曲线形成的方式在概念上是相对简单的,尽管精确的解通常是相当困难的,首先跟踪显示ER的曲线,或者单个资产的简单组合可用的值,然后考虑资产组合的组合。
右下角的边界要么是线性的,要么是加速递增的 ( d 2 σ R / d E R 2 > 0 ) \left(\mathrm{d}^2 \sigma_{\mathrm{R}} / \mathrm{dE}_{\mathrm{R}}^2>0\right) (d2σR/dER2>