【变分法】【书籍阅读笔记】Calculus of Variation by gelfand 第一章 总结与习题题解 【更新中】

前言

之前看 PRML 时碰到了 变分相关的问题,所以找了一本书特地来学习一下

1 第一章 变分法基础

1.1 泛函 与 一些简单的变分问题

该节引出泛函的定义 ,介绍一个基本的泛函问题 并且 沿用经典的微积分有限元分析,对泛函做出类似的分析

变化量(variable quantities)被称为 泛函,指的是 自变量本身是一个函数的函数

例如 J [ y ] = ∫ a b y ′ 2 ( x ) d x J[y]=\int_a^b y^{\prime 2}(x) d x J[y]=aby′2(x)dx 定义了一个泛函

一个更加一般的情形是
J [ y ] = ∫ a b F [ x , y ( x ) , y ′ ( x ) ] d x J[y]=\int_a^b F\left[x, y(x), y^{\prime}(x)\right] d x J[y]=abF[x,y(x),y(x)]dx

涉及泛函概念的问题的特定实例在三百多年前就被考虑过了,事实上,这一领域的第一个重要结果要归功于欧拉(1707 - 1783)。然而,迄今为止,"函数微积分 "仍不具备可与经典分析方法(即普通的 “函数微积分”)相媲美的通用方法。

要理解变分问题和方法的基本含义 要理解变分微积分的问题和方法的基本含义,很重要的一点是要了解它们与经典微分析的关系,即与 n个变量函数的关系。 因此,考虑一个形式为
J [ y ] = ∫ a b F ( x , y , y ′ ) d x , y ( a ) = A , y ( b ) = B J[y]=\int_a^b F\left(x, y, y^{\prime}\right) d x, \quad y(a)=A, \quad y(b)=B J[y]=abF(x,y,y)dx,y(a)=A,y(b)=B
的泛函。

沿用经典微积分理论,我们可以切分 [ a , b ] [a,b] [a,b] 区间 进行求和
a = x 0 , x 1 , … , x n , x n + 1 = b , a=x_0, \quad x_1, \ldots, \quad x_n, \quad x_{n+1}=b, a=x0,x1,,xn,xn+1=b,
J ( y 1 , … , y n ) = ∑ i = 1 n + 1 F ( x i , y i , y i − y i − 1 h ) h J\left(y_1, \ldots, y_n\right)=\sum_{i=1}^{n+1} F\left(x_i, y_i, \frac{y_i-y_{i-1}}{h}\right) h J(y1,,yn)=i=1n+1F(xi,yi,hyiyi1)h
where
y i = y ( x i ) , h = x i − x i − 1 . y_i=y\left(x_i\right), \quad h=x_i-x_{i-1} . yi=y(xi),h=xixi1.

利用这种方式解决 泛函问题被称为 有限差分法(finite differences。通过用多边形线代替 通过用多边形线代替平滑曲线,他将寻找函数极值的问题简化为寻找 n 个变量的函数极值的问题。

1.2 Function Spaces/ 赋范线性空间

本章讨论了 函数空间、重要的赋范线性空间(使得我们可以定义函数之间的距离),以及定义泛函的连续性(根据函数空间中函数之间的距离)

当我们去讨论 n 个变量(函数)的问题时,我们会很自然的去使用代数的语言:将 ( y 1 , … , y n ) \left(y_1, \ldots, y_n\right) (y1,,yn)当成时 n 维空间中的点。

函数空间:空间中的元素是函数时,即为 函数空间。

事实上,我们的函数空间很多时候取决于我们讨论的问题,例如当我们讨论这样的问题时:
∫ a b F ( x , y , y ′ ) d x \int_a^b F\left(x, y, y^{\prime}\right) d x abF(x,y,y)dx我们希望我们的函数是一维可导的连续函数,而这样的问题时即为二维可导的连续函数 ∫ a b F ( x , y , y ′ , y ′ ′ ) d x \int_a^b F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x abF(x,y,y,y′′)dx

赋范线性空间中我们可以定义 x x x and y y y 的距离为 ∥ x − y ∥ \|x-y\| xy的值.

在接下来的讨论中,下面这些 赋范线性空间是很重要的:

  1. C ( a , b ) \mathscr{C}(a, b) C(a,b) : 即所有 [a,b] 间的连续函数,norm的定义为 ∥ y ∥ 0 = max ⁡ a ⩽ x ⩽ b ∣ y ( x ) ∣ \|y\|_0=\max _{a \leqslant x \leqslant b}|y(x)| y0=maxaxby(x), 因此如果 y ∗ ( x ) y^*(x) y(x)和 y(x) 的距离为 ε \varepsilon ε,y(x)不会超过 y ∗ ( x ) y^*(x) y(x) 上下两个 ε \varepsilon ε 带的距离
  2. D 1 ( a , b ) \mathscr{D}_1(a, b) D1(a,b): 即所有 [a,b] 间的含有一阶导的连续函数
    • norm的定义: ∥ y ∥ 1 = max ⁡ a ⩽ x ⩽ b ∣ y ( x ) ∣ + max ⁡ a ⩽ x ⩽ b ∣ y ′ ( x ) ∣ \|y\|_1=\max _{a \leqslant x \leqslant b}|y(x)|+\max _{a \leqslant x \leqslant b}\left|y^{\prime}(x)\right| y1=maxaxby(x)+maxaxby(x).
  3. D n ( a , b ) \mathscr{D}_n(a, b) Dn(a,b): 即所有 [a,b] 间的含有一阶导的连续函数
    • norm的定义: ∥ y ∥ n = ∑ i = 0 n max ⁡ a ⩽ x ⩽ b ∣ y ( i ) ( x ) ∣ \|y\|_n=\sum_{i=0}^n \max _{a \leqslant x \leqslant b}\left|y^{(i)}(x)\right| yn=i=0nmaxaxb y(i)(x)

由此,我们可以给出 泛函连续性的定义:
在这里插入图片描述

1.3 泛函的变分: 具有极值的必要条件

1. 重要引理/线性泛函的等零条件

这一节我们引出 泛函的变分,类比 n个变量的微分 来 得到结果

  1. 线性泛函:首先我们给出线性泛函 的定义

在这里插入图片描述

我们给出一个 线性泛函空间的重要例子:

Example 4. More generally, the integral
φ [ h ] = ∫ a b [ α 0 ( x ) h ( x ) + α 1 ( x ) h ′ ( x ) + ⋯ + α n ( x ) h ( n ) ( x ) ] d x , \varphi[h]=\int_a^b\left[\alpha_0(x) h(x)+\alpha_1(x) h^{\prime}(x)+\cdots+\alpha_n(x) h^{(n)}(x)\right] d x, φ[h]=ab[α0(x)h(x)+α1(x)h(x)++αn(x)h(n)(x)]dx,
where the α i ( x ) \alpha_i(x) αi(x) are fixed functions in C ( a , b ) \mathscr{C}(a, b) C(a,b), defines a linear functional on D n ( a , b ) \mathscr{D}_n(a, b) Dn(a,b).

α 0 ( x ) \alpha_0(x) α0(x) 是一个固定的函数

如果 φ [ h ] \varphi[h] φ[h] 为 0,我们会得到什么结果呢,对于 α 0 ( x ) h ( x ) \alpha_0(x) h(x) α0(x)h(x) 的积分, α 1 ( x ) h ′ ( x ) \alpha_1(x) h^{\prime}(x) α1(x)h(x) 的积分 , α 2 ( x ) h ′ ′ ( x ) \alpha_2(x) h^{\prime \prime}(x) α2(x)h′′(x),以及 α ( x ) h ( x ) + β ( x ) h ′ ( x ) \alpha(x) h(x)+\beta(x) h^{\prime}(x) α(x)h(x)+β(x)h(x)我们可以给出一般性的结论

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2. 泛函变分

本节类比微积分中 增量与可微的定义,给出 可变分的定义 δ J [ h ] \delta J[h] δJ[h].

  1. 定义 泛函 J [ y ] J[y] J[y]增量 (increment)
    Δ J [ h ] = J [ y + h ] − J [ y ] \Delta J[h]=J[y+h]-J[y] ΔJ[h]=J[y+h]J[y]
  2. 如果我们把y看成固定的,那么 Δ J [ h ] \Delta J[h] ΔJ[h] 是 h 的泛函
    Δ J [ h ] = φ [ h ] + ε ∥ h ∥ \Delta J[h]=\varphi[h]+\varepsilon\|h\| ΔJ[h]=φ[h]+εh,一般来说他是 非线性的泛函,为了沿用上面的引理我们让 φ [ h ] \varphi[h] φ[h] 是个 线性泛函,并且 当 ∥ h ∥ → 0 \|h\| \rightarrow 0 h0 时, ε → 0 \varepsilon \rightarrow 0 ε0,则 J [ y ] J[y] J[y] 被称为 可变分的
  3. 变分: 线性部分 φ [ h ] \varphi[h] φ[h] (和增量的差为 比 ∥ h ∥ \|h\| h 的阶数要高的无穷小) 被称作变分,记为 δ J [ h ] \delta J[h] δJ[h]

对于变分泛函,以下几个定理是重要:

  1. 变分泛函是唯一的
  2. 可变分泛函 在 y = y ^ y=\hat{y} y=y^ 有极值的必要条件是:对于所有 h 有 δ J [ h ] = 0 \delta J[h]=0 δJ[h]=0

上述定理2的证明如下:
在这里插入图片描述

1.4 最简单的变分问题:欧拉方程

本节证明 具有 J [ y ] = ∫ a b F ( x , y , y ′ ) d x J[y]=\int_a^b F\left(x, y, y^{\prime}\right) d x J[y]=abF(x,y,y)dx 形式的 泛函的解的一般结论。

1. 欧拉方程

我们直接给出问题和结论,并且根据刚刚的变分理论给出证明在这里插入图片描述

  1. 方程 F y − d d x F y ′ = 0 F_y-\frac{d}{d x} F_{y^{\prime}}=0 FydxdFy=0被称为欧拉方程
  2. 欧拉方程的解被称为 extremal(极值曲线)

2. 证明/欧拉方程的得出

证明如下:

  1. 首先写出泛函 J 的增量形式
    Δ J = J [ y + h ] − J [ y ] = ∫ a b F ( x , y + h , y ′ + h ′ ) d x − ∫ a b F ( x , y , y ′ ) d x = ∫ a b [ F ( x , y + h , y ′ + h ′ ) − F ( x , y , y ′ ) ] d x , \begin{aligned} \Delta J=J[y+h]-J[y] & =\int_a^b F\left(x, y+h, y^{\prime}+h^{\prime}\right) d x-\int_a^b F\left(x, y, y^{\prime}\right) d x \\ & =\int_a^b\left[F\left(x, y+h, y^{\prime}+h^{\prime}\right)-F\left(x, y, y^{\prime}\right)\right] d x,\end{aligned} ΔJ=J[y+h]J[y]=abF(x,y+h,y+h)dxabF(x,y,y)dx=ab[F(x,y+h,y+h)F(x,y,y)]dx,

  2. 根据多元泰勒公式 ,增量可以写为 ∫ a b [ F y ( x , y , y ′ ) h + F y ′ ( x , y , y ′ ) h ′ ] d x \int_a^b\left[F_y\left(x, y, y^{\prime}\right) h+F_{y^{\prime}}\left(x, y, y^{\prime}\right) h^{\prime}\right] d x ab[Fy(x,y,y)h+Fy(x,y,y)h]dx 加上一个 h 的高阶无穷小。
    Δ J = ∫ a b [ F y ( x , y , y ′ ) h + F y ( x , y , y ′ ) h ′ ] d x + ⋯ \Delta J=\int_a^b\left[F_y\left(x, y, y^{\prime}\right) h+F_y\left(x, y, y^{\prime}\right) h^{\prime}\right] d x+\cdots ΔJ=ab[Fy(x,y,y)h+Fy(x,y,y)h]dx+
    即我们的变分为:

δ J = ∫ a b ( F y h + F y ′ h ′ ) d x = 0 \delta J=\int_a^b\left(F_y h+F_{y^{\prime}} h^{\prime}\right) d x=0 δJ=ab(Fyh+Fyh)dx=0

得到
F y − d d x F y ′ = 0 F_y-\frac{d}{d x} F_{y^{\prime}}=0 FydxdFy=0
该式子被称为 欧拉方程

3. 欧拉方程的求解

显然方程是一个 二阶微分方程,他的解通常取决于 A与B点的常数,然而微分方程理论中通常考虑的问题是求解的问题,该解定义在某点的邻域内并满足给定的初始条件(Cauchy’
s problem)。然而,在求解欧拉方程时,我们寻找的解是在所有固定区域上定义的函数,并且满足给定的边界条件。 因此,一个变分得出的微分方程的求解通常不能缩小到现有微分方程的理论上。

因此,我们现在陈述一个由Bernstein 给出的关于的存在唯一性的定理形式的方程 “总体” 解
y ′ ′ = F ( x , y , y ′ ) y^{\prime \prime}=F\left(x, y, y^{\prime}\right) y′′=F(x,y,y)

1.5 The Case of Several Variables

多个变量的 泛函定义为如下形式
J [ z ] = ∬ R F ( x , y , z , z x , z y ) d x d y J[z]=\iint_R F\left(x, y, z, z_x, z_y\right) d x d y J[z]=RF(x,y,z,zx,zy)dxdy

解如下(原书中有详细证明)
在这里插入图片描述

1.6 A Simple Variable End Poi nt Problem

1.7 The Variational Derivative

本节介绍 泛函的变分导数 variational (or functional) derivative δ J δ y \frac{\delta J}{\delta y} δyδJ

1.8 I nvariance of Euler’s Eq u ation

2 一些有用的重要结论/公式/例题

3 习题题解

4 总结

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
微积分的历史发展可以追溯到古希腊时期。古希腊的数学家阿基米德、埃拉托斯特尼和亚里士多德等人对于几何学的无限小量有着一定的认识。然而,真正在微积分领域有着重要贡献的是17世纪的数学家牛顿和莱布尼茨。 牛顿和莱布尼茨几乎同时独立地发展了微积分的基本原理。1665年,牛顿开始研究"fluxions"理论,他提出了求解曲线的切线斜率的方法,并将其应用于力学和天文学等领域。牛顿的工作没有在当时引起太大的关注,直到牛顿于1687年发表了《自然哲学的数学原理》(Principia Mathematica),才使其成为微积分的奠基人之一。 与此同时,莱布尼茨也独立地开发了微积分的基本原理。莱布尼茨在1675年左右提出了"differential"和"integral"的概念,并发表了一系列有关微积分的论文。莱布尼茨的符号表示法和微积分的基本原则至今仍在使用。 牛顿和莱布尼茨的发现引发了一场关于微积分发现权的争议,被称为"微积分争论"。最终,牛顿和莱布尼茨的贡献被公认为是微积分发展的里程碑。18世纪和19世纪的数学家们在牛顿和莱布尼茨的基础上进一步完善和推广了微积分的理论和应用,如欧拉和拉格朗日等。 微积分在科学和工程领域起着重要的作用,被广泛应用于物理学、经济学、计算机科学、生物学等各个领域。至今,微积分仍然是数学的重要分支,并不断地发展和完善。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值