文章目录
前言
1 第一章 概率论引论 总结
第一章从事件的角度引出样本空间、事件、概率的基本定义,并且介绍条件概率、独立性,贝叶斯公式的事件形式
1.1 样本空间与事件
样本(sample):某次试验的可能结果(outcome)
样本空间(sample space):所有样本的可能结果
事件(event):样本空间的一个 子集
1.2 定义在事件上的概率
- 概率定义
概率定义(probabiliity):概率是定义在事件上的函数 ,需要满足以下条件
(i) 0 ⩽ P ( E ) ⩽ 1 0 \leqslant \mathrm{P}(E) \leqslant 1 0⩽P(E)⩽1.
(ii) P ( S ) = 1 \mathrm{P}(S)=1 P(S)=1.
(iii) 对于任意互不相容的事件序列 E 1 , E 2 , ⋯ E_1, E_2, \cdots E1,E2,⋯, 即当 n ≠ m n \neq m n=m 时 E n E m = ∅ E_n E_m=\varnothing EnEm=∅ 的事 件序列, 有
P ( ⋃ n = 1 ∞ E n ) = ∑ n = 1 ∞ P ( E n ) \mathrm{P}\left(\bigcup_{n=1}^{\infty} E_n\right)=\sum_{n=1}^{\infty} \mathrm{P}\left(E_n\right) P(n=1⋃∞En)=n=1∑∞P(En)
我们将 P ( E ) \mathrm{P}(E) P(E) 称为事件 E E E 的概率.
注意条件三,他给了我们 在事件独立时求和概率的一个公式
- 容斥恒等式
P ( E 1 ∪ E 2 ∪ ⋯ ∪ E n ) = ∑ i P ( E i ) − ∑ i < j P ( E i E j ) + ∑ i < j < k P ( E i E j E k ) − ∑ i < j < k < l P ( E i E j E k E l ) + ⋯ + ( − 1 ) n + 1 P ( E 1 E 2 ⋯ E n ) \begin{aligned} \mathrm{P}\left(E_1 \cup E_2 \cup \cdots \cup E_n\right)= & \sum_i \mathrm{P}\left(E_i\right)-\sum_{i<j} \mathrm{P}\left(E_i E_j\right)+\sum_{i<j<k} \mathrm{P}\left(E_i E_j E_k\right)- \\ & \sum_{i<j<k<l} \mathrm{P}\left(E_i E_j E_k E_l\right)+\cdots+(-1)^{n+1} \mathrm{P}\left(E_1 E_2 \cdots E_n\right) \end{aligned} P(E1∪E2∪⋯∪En)=i∑P(Ei)−i<j∑P(EiEj)+i<j<k∑P(EiEjEk)−i<j<k<l∑P(EiEjEkEl<