Python数据结构与算法学习第一天

一.为什么要学习数据结构与算法?

答:如果将最终写好运行的程序比作战场,我们码农便是指挥作战的将军,而我们所写的代码便是士兵和武器。数据结构和算法是一名程序开发人员的必备基本功,不是一朝一夕就能练成绝世高手的。冰冻三尺非一日之寒,需要我们平时不断的主动去学习积累。
举例:如果 a+b+c=1000,且a方+b方=c方(a,b,c 为自然数),如何求出所有a、b、c可能的组合?
在这里插入图片描述
从图中可知,运算时间将近125秒。下图是将原理代码进行改进,减少了一个for循环后,所执行的结果。在这里插入图片描述
可以看出,执行时间大大的缩短了,由此展开了算法的提出。

二.算法的概念:

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。算法是独立存在的一种解决问题的方法和思想。

①.算法的五大特性:
1.输入: 算法具有0个或多个输入
2.输出: 算法至少有1个或多个输出
3.有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
4.确定性:算法中的每一步都有确定的含义,不会出现二义性
5.可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

②.算法效率的衡量:
对于同一个问题,在上面两张图中,给出了两种算法,而执行时间相差悬殊。由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣
但是单靠时间绝对值并不一定客观准确,因为还存在着计算机硬件配置等一系列问题。所以我们引入了------时间复杂度与“大O记法
我们假定计算机执行算法每一个基本操作的时间是固定的一个时间单位,那么有多少个基本操作就代表会花费多少时间单位。算法对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。对于算法的时间效率,我们可以用“大O记法”来表示。
“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。
时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)
上面两张图中的核心算法进行对比:
在这里插入图片描述
时间复杂度:T(n)=O(1000100010002)=O(21000^3)
在这里插入图片描述
时间复杂度:T(n)=O(100010003)=O(3*1000^2)
由此可见,我们尝试的第二种算法要比第一种算法的时间复杂度好一级。

最坏时间复杂度:
分析算法时,存在几种可能的考虑:
算法完成工作最少需要多少基本操作,即最优时间复杂度
算法完成工作最多需要多少基本操作,即最坏时间复杂度
算法完成工作平均需要多少基本操作,即平均时间复杂度
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。而最优时间复杂度只是反映了最乐观的情况,并没有参考价值。因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。

时间复杂度的几条基本计算规则:
1.基本操作,即只有常数项,认为其时间复杂度为O(1)
2.顺序结构,时间复杂度按加法进行计算
3.循环结构,时间复杂度按乘法进行计算
4.分支结构,时间复杂度取最大值
5.判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
6.在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

常见的时间复杂度:
在这里插入图片描述
常见时间复杂度之间的关系:
在这里插入图片描述

三.数据结构

①.概念:
数据是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系便是结构。数据结构指数据对象中数据元素之间的关系。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。

程序 = 数据结构 + 算法
总结:算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体

②.抽象数据类型(Abstract Data Type):
抽象数据类型(ADT)的含义是指一个数学模型以及定义在此数学模型上的一组操作。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。
最常用的数据运算有五种:插入、删除、修改、查找、排序

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读