题目:http://acm.zcmu.edu.cn/JudgeOnline/problem.php?id=2095
2095: 危险系数
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 40 Solved: 24
[Submit][Status][Web Board]
Description
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
Input
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
Output
一个整数,如果询问的两点不连通则输出-1.
Sample Input
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
Sample Output
2
HINT
Source
解题思路:
先根据顶点建立图,根据题意先判断u,v之间是否有通路,可以采用dfs从u点出发看是否能够遍历到v,如果不能说明没有通路则输出-1,反之,建立for循环,假设顶点1是关键点,就将顶点1的dfs遍历数组q设为1,进行深度搜索,如果能从u遍历到v,说明1不是关键点,反之,则是,ans++。
代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<iostream>
using namespace std;
vector<int>edge[2500];
int q[2500];
void dfs(int x)
{
for(int i=0;i<edge[x].size();i++){
int c=edge[x][i];
if(q[c]==0){
//cout<<"c="<<c<<endl;
q[c]=1;
dfs(c);
}
}
}
int main()
{
int n,m,ans=0,i;
cin>>n>>m;
for(i=0;i<m;i++){
int a,b;
cin>>a>>b;
edge[a].push_back(b);
edge[b].push_back(a);
}
int u,v;
cin>>u>>v;
memset(q,0,sizeof(q));
q[u]=1;
dfs(u);
if(q[v]==0){
cout<<"-1"<<endl;
return 0;
}
//cout<<"...."<<endl;
memset(q,0,sizeof(q));
for(i=1;i<=n;i++){
q[u]=1;
if(i!=u && i!=v){
q[i]=1;
dfs(u);
if(q[v]==0)ans++;
}
memset(q,0,sizeof(q));
//cout<<i<<"--------"<<endl;
}
cout<<ans<<endl;
return 0;
}