判断回溯:拿到一个问题,你感觉如果不穷举一下就没法知道答案,那就可以开始回溯了。
一般回溯的问题有三种:
- Find a path to success 有没有解
- Find all paths to success
求所有解
求所有解的个数
求所有解的具体信息 - Find the best path to success 求最优解
回溯法是一个剪枝了的二叉树。我们要得到的结果是可以 good leaf,如果不满足 good leaf 就继续向下搜索,搜索的时候需要满足一定的条件。
回溯法的代码套路是使用两个变量: res
和 path
,res 表示最终的结果,path 保存已经走过的路径。如果搜到一个状态满足题目要求,就把 path 放到 res 中。
代码后面的判断条件都是 if,而不是 elif,因为是满足两个条件的任意一个就可以继续向下搜索,而不是同时只能满足其中的一个。
例子:Leetcode22. 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
class Solution {
public:
vector<string> generateParenthesis(int n) {
vector<string> res;
int lc = 0, rc = 0;
dfs(res, "", n, lc, rc);
return res;
}
void dfs(vector<string>& res, string path, int n, int lc, int rc) {
//lc 和 rc 表示左括号和右括号的数量
if (rc > lc || lc > n || rc > n) return;
if (lc == rc && lc == n) {
res.push_back(path);
return;
}
dfs(res, path + '(', n, lc + 1, rc);
dfs(res, path + ')', n, lc, rc + 1);
}
};