机器学习
文章平均质量分 59
没有胡子的猫
这个作者很懒,什么都没留下…
展开
-
Python求解回归问题
title: Python求解回归问题cover: https://gitee.com/Asimok/picgo/raw/master/img/MacBookPro/20210801104603.pngcategories: 机器学习tags:Python机器学习keywords: ‘机器学习,Python’date: 2021-8-1Python求解回归问题y=wx+bimport numpy as npimport matplotlib.pyplot as plt# 计.原创 2021-08-24 17:35:32 · 232 阅读 · 0 评论 -
Top-k准确率
Top-k准确率import tensorflow as tfimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #限制控制台打印日志级别tf.random.set_seed(2467)def accuracy(output, target, topk=(1,)): # output [10,6] maxk = max(topk) batch_size = target.shape[0] pred =原创 2021-08-24 17:28:22 · 1126 阅读 · 1 评论 -
用LSTM预测股票行情
这里采用沪深300指数数据,时间跨度为2010-10-10至今,选择每天最高价格。假设当天最高价依赖当天的前n(如30)天的沪深300的最高价。用LSTM模型来捕捉最高价的时序信息,通过训练模型,使之学会用前n天的最高价,判断当天的最高价(作为训练的标签值)。导入数据这里使用tushare来下载沪深300指数数据。可以用pip 安装tushare。import tushare as ts #导入cons = ts.get_apis() #建立连接#获取沪深指数(000300)的信息,包括交易原创 2021-07-20 19:26:26 · 803 阅读 · 6 评论 -
用注意力机制实现中英文互译
用注意力机制实现中英文互译[KEY: > input, = target, < output]il est en train de peindre un tableau .= he is painting a picture .< he is painting a picture .pourquoi ne pas essayer ce vin delicieux ?= why not try that delicious wine ?< why not try t原创 2021-07-20 19:24:32 · 869 阅读 · 2 评论 -
使用sklearn进行线性回归和二次回归的比较程序
使用sklearn进行线性回归和二次回归的比较程序#coding=utf-8"""#演示内容:二次回归和线性回归的拟合效果的对比"""print(__doc__)import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeaturesfrom matplotli原创 2021-07-20 19:23:41 · 1302 阅读 · 0 评论 -
使用sklearn进行量纲缩放的程序
使用sklearn进行量纲缩放的程序# -*- coding: utf-8 -*-"""演示内容:量纲的特征缩放(两种方法:标准化缩放法和区间缩放法。每种方法举了两个例子:简单二维矩阵和iris数据集)"""#方法1:标准化缩放法 例1:对简单示例二维矩阵的列数据进行from sklearn import preprocessing import numpy as np #采用numpy的array表示,因为要用到其mean等函数,而list没有这些函数X = np.array([原创 2021-07-20 19:22:54 · 245 阅读 · 0 评论 -
使用Sklearn进行精确率-召回率曲线的绘制
使用Sklearn进行精确率-召回率曲线的绘制精确率:模型判定的正例中真正正例所占的比重召回率:总正例中被模型判定为正例的比重#coding=utf-8"""#演示目的:利用鸢尾花数据集画出P-R曲线"""print(__doc__)#演示目的:利用鸢尾花数据集画出P-R曲线import matplotlib.pyplot as pltimport numpy as npfrom sklearn import svm, datasetsfrom sklearn.metrics原创 2021-07-20 19:22:20 · 2567 阅读 · 1 评论 -
使用sklearn对文档进行向量化的程序
使用sklearn对文档进行向量化的程序# -*- coding: utf-8 -*-"""演示内容:文档的向量化"""from sklearn.feature_extraction.text import CountVectorizercorpus = ['Jobs was the chairman of Apple Inc., and he was very famous','I like to use apple computer','And I also like to eat a原创 2021-07-20 19:21:42 · 402 阅读 · 0 评论 -
【代码实现】Translating Embeddings for Modeling Multi-relational Data
TransE《Translating Embeddings for Modeling Multi-relational Data》任务在低维向量空间中,将多种关系的图谱中的实体和关系在一个低维空间中进行表示,获得每个实体的表征结果。提出一种易于训练的规范模型,该模型包含数量较少的参数,并且可以扩展到非常大的知识库。对知识图谱中的多元关系数据进行建模,在不引入额外知识的情况下,高效的实现知识补全,关系预测。方法(模型)TransE:基于能量的模型,用于学习实体的低维嵌入。关系作为向原创 2021-07-18 14:16:07 · 374 阅读 · 0 评论 -
【代码实现】tag-based-multi-span-extraction
tag-based-multi-span-extraction代码:https://github.com/eladsegal/tag-based-multi-span-extraction论文:A Simple and Effective Model for Answering Multi-span Questions配置环境变量添加代理 scp -r zhaoxiaofeng@219.216.64.175:~/.proxychains ./修改~/.bashrc,在末尾添加指令别名a原创 2021-07-18 14:16:21 · 785 阅读 · 3 评论 -
RNN循环神经网络
RNN循环神经网络序列数据:与先后顺序有关的数据。对于序列数据,可以使用循环神经网络。Ht=ϕ(XtWxh+Ht−1Whh+bh)H_t=ϕ(X_tW_{xh}+H_{t−1}W_{hh}+b_h)Ht=ϕ(XtWxh+Ht−1Whh+bh)Ot=HtWhq+bqO_t=H_tW_{hq}+b_qOt=HtWhq+bqXt∈Rn×dX_t∈R^{n×d}Xt∈Rn×d是序列中时间步ttt小批量输入。Ht∈Rn×hH_t∈R^{n×h}Ht∈Rn×h是该时间步原创 2021-07-17 14:26:04 · 170 阅读 · 0 评论 -
【代码实现】READING AND ANSWERING GIVEN REASONING PATHS
READING AND ANSWERING GIVEN REASONING PATHSreader model多任务阅读器模型多任务阅读器模型阅读理解任务使用BERT从推理路径中提取答案范围。对推理路径重排序使用Bert模型对应于CLS标识符位的输出判断推理路径包括答案的概率。根据概率对推理路径重新排序。P(E∣q)=σ(wn⋅uE) s.t. uE=BERT[CLS](q,E)∈RDP(E|q) = σ(w_n· u_E原创 2021-07-17 14:24:46 · 219 阅读 · 1 评论 -
使用逻辑回归对鸢尾花进行分类
使用逻辑回归对鸢尾花进行分类import numpy as npimport matplotlib.pyplot as pltfrom sklearn import linear_modelfrom sklearn.metrics import accuracy_scorefrom sklearn.datasets import load_iris# 加载数据集iris = load_iris()# 打印数据集描述print(iris.DESCR).. _iris_dataset:原创 2021-07-04 13:58:03 · 1298 阅读 · 0 评论 -
利用神经网络完成对手写数字进行识别
利用神经网络完成对手写数字进行识别网络结构两个隐藏层每层激活函数为Relu数据集:mnist1. 准备数据import osimport numpy as npimport matplotlib.pyplot as pltimport torch# 导入 pytorch 内置的 mnist 数据from torchvision.datasets import mnist# 导入预处理模块import torchvision.transforms as transfor原创 2021-07-04 13:57:39 · 727 阅读 · 1 评论 -
机器学习基础
机器学习基础1. 机器学习的基本内容监督学习无监督学习半监督学习强化学习2. 常用的正则化方法正则化是解决过拟合的常用方法。正则化是什么呢?在机器学习中很多显式的用来减少测试误差的策略,统称为正则化。正则化的目的是减少泛化误差而不是训练误差。2.1权重正则化L2正则化称为:权重衰减(Weight Deacy)minθ12m∑i=1m(hθ(x(i))−y(i))2+λ∣∣W∣∣2min_\theta\frac{1}{2m}\sum_{i=1}^m(原创 2021-07-04 13:56:53 · 473 阅读 · 0 评论 -
常用激活函数
常用激活函数import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-10, 10)fig = plt.figure()1. sigmoidy_sigmoid = 1/(1+np.exp(-x))ax = fig.add_subplot(221)plt.xlim(-11, 11)plt.ylim(0, 1)ax = plt.gca() # 获得当前axis坐标轴对象ax.spines['right'].原创 2021-07-04 13:55:35 · 164 阅读 · 0 评论 -
波士顿房价预测
波士顿房价预测import numpy as npimport matplotlibfrom sklearn import linear_modelfrom sklearn.datasets import load_bostonfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import mean_squared_errorfrom sklearn.metrics import mean_abs原创 2021-07-04 13:54:22 · 279 阅读 · 0 评论 -
使用字符级 RNN 对名称进行分类
使用字符级 RNN 对名称进行分类字符级 RNN 将单词读取为一系列字符,在每一步输出预测和隐藏状态,将其先前的隐藏状态输入到下一时间步。将最终预测作为输出,即单词属于哪个类。具体来说,我们将训练来自 18 种起源语言的数千个姓氏,并根据拼写预测名称来自哪种语言:示例: $ python predict.py Hinton (-0.47) Scottish (-1.52) English (-3.57) Irish $ python predict.py Sc原创 2021-07-04 13:53:37 · 241 阅读 · 1 评论 -
用tensorboardX可视化神经网络
用tensorboardX可视化神经网络安装:pip install tensorboardXfrom tensorboardX import SummaryWriterwriter = SummaryWriter('runs/scalar_example')for i in range(10): writer.add_scalar('quadratic', i**2, global_step=i) writer.add_scalar('exponential', 2**i, glo原创 2021-02-07 17:55:44 · 200 阅读 · 0 评论 -
使用Tensor及Autograd实现机器学习
使用Tensor及Autograd实现机器学习表达式:y=3x2+2y=3x^2+2y=3x2+2模型:y=wx2+by=wx^2+by=wx2+b损失函数:Loss=12∑i=1100(wxi2+b−yi)2Loss=\frac{1}{2}\sum_{i=1}^{100}(wx^2_i+b-y_i)^2Loss=21∑i=1100(wxi2+b−yi)2对损失函数求导:∂Loss∂w=∑i=1100(wxi2+b−yi)2xi2\frac{\partial Loss}{\partial原创 2021-02-07 17:54:51 · 149 阅读 · 0 评论 -
使用Numpy实现机器学习
使用Numpy实现机器学习表达式:y=3x2+2y=3x^2+2y=3x2+2模型:y=wx2+by=wx^2+by=wx2+b损失函数:Loss=12∑i=1100(wxi2+b−yi)2Loss=\frac{1}{2}\sum_{i=1}^{100}(wx^2_i+b-y_i)^2Loss=21∑i=1100(wxi2+b−yi)2对损失函数求导:∂Loss∂w=∑i=1100(wxi2+b−yi)2xi2\frac{\partial Loss}{\partial w}=\sum_{i原创 2021-02-07 17:54:18 · 217 阅读 · 0 评论 -
利用神经网络完成对手写数字进行识别
利用神经网络完成对手写数字进行识别网络结构两个隐藏层每层激活函数为Relu数据集:mnist1. 准备数据import osimport numpy as npimport matplotlib.pyplot as pltimport torch# 导入 pytorch 内置的 mnist 数据from torchvision.datasets import mnist# 导入预处理模块import torchvision.transforms as transfor原创 2021-02-07 17:52:53 · 540 阅读 · 0 评论 -
机器学习基础
机器学习基础1. 机器学习的基本内容监督学习无监督学习半监督学习强化学习2. 常用的正则化方法正则化是解决过拟合的常用方法。正则化是什么呢?在机器学习中很多显式的用来减少测试误差的策略,统称为正则化。正则化的目的是减少泛化误差而不是训练误差。2.1权重正则化L2正则化称为:权重衰减(Weight Deacy)minθ12m∑i=1m(hθ(x(i))−y(i))2+λ∣∣W∣∣2min_\theta\frac{1}{2m}\sum_{i=1}^m(原创 2021-02-07 17:51:37 · 769 阅读 · 0 评论 -
常用激活函数
常用激活函数import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-10, 10)fig = plt.figure()1. sigmoidy_sigmoid = 1/(1+np.exp(-x))ax = fig.add_subplot(221)plt.xlim(-11, 11)plt.ylim(0, 1)ax = plt.gca() # 获得当前axis坐标轴对象ax.spines['right'].原创 2021-02-07 17:49:20 · 165 阅读 · 1 评论 -
常用激活函数
常用激活函数import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-10, 10)fig = plt.figure()1. sigmoidy_sigmoid = 1/(1+np.exp(-x))ax = fig.add_subplot(221)plt.xlim(-11, 11)plt.ylim(0, 1)ax = plt.gca() # 获得当前axis坐标轴对象ax.spines['right'].原创 2020-11-17 14:31:06 · 100 阅读 · 0 评论 -
机器学习基础
机器学习基础1. 机器学习的基本内容监督学习无监督学习半监督学习强化学习2. 常用的正则化方法正则化是解决过拟合的常用方法。正则化是什么呢?在机器学习中很多显式的用来减少测试误差的策略,统称为正则化。正则化的目的是减少泛化误差而不是训练误差。2.1权重正则化L2正则化称为:权重衰减(Weight Deacy)minθ12m∑i=1m(hθ(x(i))−y(i))2+λ∣∣W∣∣2min_\theta\frac{1}{2m}\sum_{i=1}^m(原创 2020-11-17 14:30:10 · 454 阅读 · 0 评论 -
利用神经网络完成对手写数字进行识别
利用神经网络完成对手写数字进行识别网络结构两个隐藏层每层激活函数为Relu数据集:mnist1. 准备数据import osimport numpy as npimport matplotlib.pyplot as pltimport torch# 导入 pytorch 内置的 mnist 数据from torchvision.datasets import mnist# 导入预处理模块import torchvision.transforms as transfor原创 2020-11-14 22:20:04 · 546 阅读 · 0 评论 -
使用Tensor及Autograd实现机器学习
使用Tensor及Autograd实现机器学习表达式:y=3x2+2y=3x^2+2y=3x2+2模型:y=wx2+by=wx^2+by=wx2+b损失函数:Loss=12∑i=1100(wxi2+b−yi)2Loss=\frac{1}{2}\sum_{i=1}^{100}(wx^2_i+b-y_i)^2Loss=21∑i=1100(wxi2+b−yi)2对损失函数求导:∂Loss∂w=∑i=1100(wxi2+b−yi)2xi2\frac{\partial Loss}{\partial原创 2020-11-14 22:19:27 · 165 阅读 · 0 评论 -
使用Numpy实现机器学习
使用Numpy实现机器学习表达式:y=3x2+2y=3x^2+2y=3x2+2模型:y=wx2+by=wx^2+by=wx2+b损失函数:Loss=12∑i=1100(wxi2+b−yi)2Loss=\frac{1}{2}\sum_{i=1}^{100}(wx^2_i+b-y_i)^2Loss=21∑i=1100(wxi2+b−yi)2对损失函数求导:∂Loss∂w=∑i=1100(wxi2+b−yi)2xi2\frac{\partial Loss}{\partial w}=\sum_{i原创 2020-11-14 22:17:59 · 331 阅读 · 2 评论 -
NLP 使用jieba分词
相比于机械法分词法,jieba联系上下文的分词效果更好。同时使用HMM模型对词组的分类更加准确。测试对如下文本的分词效果南门街前段时间经过整改劝阻摆摊占道的情况改善了很多,但是情况好了几天又慢慢的和以前一样了,只要有人带头后面慢慢又摆出来,很多商户现在干脆用钩子把一些货物挂门口屋檐下的电线上,上有政策下就有对策,城管来检查就稍微好点,城管一走又摆出来又是老样子,希望有关部门采取强硬点的措...原创 2020-04-01 19:48:20 · 391 阅读 · 0 评论