n点 m边
1.spfa算法最坏情况o(nm)一般情况下是线性的复杂度,当出现网格状的数据时容易出现最坏情况,一般不会被卡,边权可以是负数,但是不能有负环。最常用的算法因此写在第一个。
算法思想:该算法又叫做队列优化的bellman-ford算法,再bellman-ford算法将变小的保存在队列中(也就是会对距离产生变化的点)
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
int n,m;
const int N=1e5+10;
vector<pair<int,int>>g[N];
int d[N];
bool in_que[N];
void spfa(){
memset(d,0x3f,sizeof d);
d[1]=0;
queue<int>q;
q.push(1);
in_que[1]=true;
while(q.size()){
int ver=q.front();
q.pop();
in_que[ver]=false;
for(pair<int,int>p:g[ver]){
if(d[p.first]>d[ver]+p.second){
d[p.first]=d[ver]+p.second;
if(!in_que[p.first])q.push(p.first);
in_que[p.first]=true;
}
}
}
if(d[n]>0x3f3f3f3f/2)cout<<"impossible";
else cout<<d[n];
}
int main(){
cin>>n>>m;
while(m--){
int a,b,c;
cin>>a>>b>>c;
g[a].push_back({b,c});
}
spfa();
return 0;
}
2.dijkstra算法o(n*n)
#include<iostream>
#include<cstring>
using namespace std;
int n,m;
const int N=510;
int g[N][N];
int d[N];
bool v[N];
void dijkstra(){
memset(d,0x3f,sizeof d);
d[1]=0;
for(int i=1;i<n;i++){
int t=0;
for(int j=1;j<=n;j++)
if(!v[j]&&(t==0||d[j]<d[t]))t=j;
v[t]=true;
for(int j=1;j<=n;j++){
if(!v[j]&&d[j]>d[t]+g[t][j])d[j]=d[t]+g[t][j];
}
}
if(d[n]>=0x3f3f3f3f)cout<<-1;
else cout<<d[n];
}
int main(){
cin>>n>>m;
memset(g,0x3f,sizeof g);
while(m--){
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
}
dijkstra();
return 0;
}
3.堆优化的dijkstra O(m*log(n))
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
int n, m;
const int N = 1.5e5 + 10;
vector<pair<int, int>>g[N];
int d[N];
bool v[N];
void dijkstra() {
memset(d, 0x3f, sizeof d);
d[1] = 0;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int,int>>>q;
q.push({ 0,1 });
while (q.size()) {
pair<int, int>t = q.top();
q.pop();
if(v[t.second])continue;//防止重复判断堆中加入的元素
v[t.second] = true;
if(t.second==n)break;
for (pair<int, int>p : g[t.second]) {
int w = p.second;
int ver = p.first;
if (v[ver])continue;
if (d[ver] > d[t.second] + w) {
d[ver] = d[t.second] + w;
q.push({ d[ver],ver });
}
}
}
if(d[n]>=0x3f3f3f3f)cout<<-1;
else cout << d[n];
}
int main() {
cin >> n >> m;
while (m--) {
int a, b, c;
cin >> a >> b >> c;
g[a].push_back({ b,c });
}
dijkstra();
return 0;
}
最小生成树
1.prim (朴素版)O(n*n)
该算法跟dijkstra()算法特别像,不同点在于prim算法d数组(dist)维护的是到最小生成树的距离,prim算法可以进行堆优化,不过一般不常用,再稀疏图是kruskal算法更常用。
#include<iostream>
#include<cstring>
using namespace std;
int n,m;
const int N=510;
int d[N];
int g[N][N];
bool tg[N];
void prim(){
memset(d,0x3f,sizeof d);
d[1]=0;
for(int i=1;i<n;i++){
int t=0;
for(int j=1;j<=n;j++)
if(!tg[j]&&(t==0||d[j]<d[t]))t=j;
tg[t]=true;
for(int j=1;j<=n;j++){
if(!tg[j]&&d[j]>g[t][j])d[j]=g[t][j];
}
}
int res=0;
for(int i=1;i<=n;i++)res+=d[i];
if(res>0x3f3f3f3f/2)cout<<"impossible";
else cout<<res;
}
int main(){
cin>>n>>m;
memset(g,0x3f,sizeof g);
while(m--){
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
g[b][a]=min(g[b][a],c);
}
prim();
return 0;
}
2.kruskal算法 O(m*log(m))
算法的时间复杂度主要取决于排序的时间复杂度。算法的基本思想,将所有边小到大进行排序,遍历所有边,看看是否连通,如果不连通加入。
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
const int M=2e5+10;
const int N=1e5+10;
struct edge{int a,b,c;}edges[M];
int p[N];
int find(int a){
if(p[a]!=a)p[a]=find(p[a]);
return p[a];
}
void merge(int a,int b){
p[find(a)]=find(b);
}
bool judge(int a,int b){
return find(a)==find(b);
}
bool cmp(edge a,edge b){
return a.c<b.c;
}
void kruskal(){
int res=0;
int cnt=0;
sort(edges,edges+m,cmp);
for(int i=0;i<m;i++){
edge e=edges[i];
if(!judge(e.a,e.b))merge(e.a,e.b),res+=e.c,cnt++;
}
if(cnt==n-1)cout<<res;
else cout<<"impossible";
}
int main(){
cin>>n>>m;
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
edges[i]={a,b,c};
}
for(int i=1;i<=n;i++)p[i]=i;
kruskal();
return 0;
}