题目来源于一道以前的笔试题,当时没做出来,现在想明白了,自己整理一下。
问题:已知两个正整数m,n(m<n),求m到n中所有数字出现的次数。
思路:
需要实现一个函数count(n,x)求出1-n中数字x出现的次数,如count(100,2)=20。
将count(n,x)- count(m-1,x)为当前数字的次数,在进行for循环遍历可以得到结果。
count(n,x)实现思路主要是将数字的每一位为对应的数字是的所有情况求出来,最后相加。具体求出每一位的思路如下
对于一个数 abcodef
- o不为0
1.1 高位为0-abc的情况res+=abc*1000(abc为0到abc-1的数值的个数,1000为0-999数值的个数)
1.2 高位为abc的情况,假如o大于x则res+=1000,假如o等于x则res+=def,o小于x时易知不需要加 - o为0
o为0时如果按照其他数字的做法有前导0的情况,会出现错误,例如009,其实该数字对应着的是9,是没有0的。前导0需要有两处进行改进。第一处是o的高位只能取到1-abc (009的0是无效的但是109的0是有效的),第二处是o不能在第一位
具体代码如下
int pow10(int x){
int res = 1;
for(int i = 1;i <= x; i++) res *= 10;
return res;
}
int get(vector<int> v,int l,int r){
int res= 0;
for(int i = l;i >= r; i--){
res *= 10;
res += v[i];
}
return res;
}
int count(int n,int x){
vector<int> v;
while (n){
v.push_back(n % 10);
n /= 10;
}
n = v.size();
int res = 0;
//!x表示对0的情况进行了去除
for (int i = n - 1 - !x; i >= 0; i--){
if (i != n - 1){
//!x表示对0的情况进行了去除
res += pow10(i) * (get(v, n - 1, i + 1) - !x);
}
if (v[i] > x) res += pow10(i);
else if (v[i] == x) res += get(v, i - 1, 0) + 1;
}
return res;
}