数位统计DP

题目来源于一道以前的笔试题,当时没做出来,现在想明白了,自己整理一下。
问题:已知两个正整数m,n(m<n),求m到n中所有数字出现的次数。

思路:
需要实现一个函数count(n,x)求出1-n中数字x出现的次数,如count(100,2)=20。
将count(n,x)- count(m-1,x)为当前数字的次数,在进行for循环遍历可以得到结果。
count(n,x)实现思路主要是将数字的每一位为对应的数字是的所有情况求出来,最后相加。具体求出每一位的思路如下
对于一个数 abcodef

  1. o不为0
    1.1 高位为0-abc的情况res+=abc*1000(abc为0到abc-1的数值的个数,1000为0-999数值的个数)
    1.2 高位为abc的情况,假如o大于x则res+=1000,假如o等于x则res+=def,o小于x时易知不需要加
  2. o为0
    o为0时如果按照其他数字的做法有前导0的情况,会出现错误,例如009,其实该数字对应着的是9,是没有0的。前导0需要有两处进行改进。第一处是o的高位只能取到1-abc (009的0是无效的但是109的0是有效的),第二处是o不能在第一位

具体代码如下

int pow10(int x){
    int res = 1;
    for(int i = 1;i <= x; i++) res *= 10;
    return res;
}

int get(vector<int> v,int l,int r){
    int res= 0;
    for(int i = l;i >= r; i--){
        res *= 10;
        res += v[i];
    }
    return res;
}

int count(int n,int x){
    vector<int> v;
    while (n){
        v.push_back(n % 10);
        n /= 10;
    }
    n = v.size();
    int res = 0;
    //!x表示对0的情况进行了去除
    for (int i = n - 1 - !x; i >= 0; i--){
        if (i != n - 1){
        //!x表示对0的情况进行了去除
            res += pow10(i) * (get(v, n - 1, i + 1) - !x);
        }
        if (v[i] > x) res += pow10(i);
        else if (v[i] == x) res += get(v, i - 1, 0) + 1;
    }

    return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值