Description
Given an undirected weighted graph G, you should find one of spanning
trees specified as follows.The graph G is an ordered pair (V, E), where V is a set of vertices
{v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}.
Each edge e ∈ E has its weight w(e).A spanning tree T is a tree (a connected subgraph without cycles)
which connects all the n vertices with n − 1 edges. The slimness of a
spanning tree T is defined as the difference between the largest
weight and the smallest weight among the n − 1 edges of T.Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3,
v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the
edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as
shown in Figure 5(b).Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in
Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges
whose weights are 3, 6 and 7. The largest weight is 7 and the smallest
weight is 3 so that the slimness of the tree Ta is 4. The slimnesses
of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are
3, 2 and 1, respectively. You can easily see the slimness of any other
spanning tree is greater than or equal to 1, thus the spanning tree Td
in Figure 6(d) is one of the slimmest spanning trees whose slimness is
1.Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing
two zeros separated by a space. Each dataset has the following format.
n m a1 b1 w1 ⋮ am bm wmEvery input item in a dataset is a non-negative integer. Items in a
line are separated by a space. n is the number of the vertices and m
the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n −
1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal
to n, which represent the two vertices vak and vbk connected by the
kth edge ek. wk is a positive integer less than or equal to 10000,
which indicates the weight of ek. You can assume that the graph G =
(V, E) is simple, that is, there are no self-loops (that connect the
same vertex) nor parallel edges (that are two or more edges whose both
ends are the same two vertices).Output
For each dataset, if the graph has spanning trees, the smallest
slimness among them should be printed. Otherwise, −1 should be
printed. An output should not contain extra characters.
把边按边权排序之后,取到的边一定是连续的一段【其中可能有一些边不取,但是答案就是右端点减左端点】。
因为数据范围比较小,直接O(n^2)枚举起点扫描,用并查集维护,直到加入n-1条边。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int oo=0x3f3f3f3f;
struct edge
{
int u,v,w;
bool operator < (const edge & rhs) const
{
return w<rhs.w;
}
}g[10010];
int m,n,fa[110];
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
void init()
{
int i;
for (i=1;i<=m;i++)
scanf("%d%d%d",&g[i].u,&g[i].v,&g[i].w);
sort(g+1,g+m+1);
}
int solve()
{
int i,j,k,cnt,ret=oo;
for (i=1;i<=m;i++)
{
cnt=0;
for (k=1;k<=n;k++)
fa[k]=k;
for (j=i;j<=m;j++)
if (find(g[j].u)!=find(g[j].v))
{
cnt++;
fa[fa[g[j].u]]=fa[g[j].v];
if (cnt==n-1)
{
ret=min(ret,g[j].w-g[i].w);
break;
}
}
}
return ret<oo?ret:-1;
}
int main()
{
while (scanf("%d%d",&n,&m)&&n)
{
init();
printf("%d\n",solve());
}
}