功率谱估计的参数模型方法---AR模型谱估计:自相关法&协方差法

第一篇自己的博客,这篇文章将参考文献[1]中的AR模型方法与参考文献[2]中的方法联系起来,算是个笔记吧。看到这个代码有点懵acm.m,这样简单的问题都思考了好一会儿了,LaTex也不怎么会用。。。我的知识真是太匮乏了

信号的线性模型(零极点模型/Pole-Zero Modeling)

常系数线性差分方程:
Y [ n ] + a 1 Y [ n − 1 ] + ⋯ + a p Y [ n − p ] = b 0 X [ n ] + b 1 X [ n − 1 ] + ⋯ + b q X [ n − q ] Y[n] + a_1Y[n-1]+\cdots+a_pY[n-p]=b_0X[n]+b_1X[n-1]+\cdots+b_qX[n-q] Y[n]+a1Y[n1]++apY[np]=b0X[n]+b1X[n1]++bqX[nq]
其中, X [ n ] X[n] X[n]是输入随机序列, Y [ n ] Y[n] Y[n]是输出序列。

(1)AR模型(自回归/全零点模型)

如果则如果 q = 0 q=0 q=0(右端仅有一项)
Y [ n ] + a 1 Y [ n − 1 ] + ⋯ + a p Y [ n − p ] = b 0 X [ n ] Y[n] + a_1Y[n-1]+\cdots+a_pY[n-p]=b_0X[n] Y[n]+a1Y[n1]++apY[np]=b0X[n]
记为 A R ( p ) AR(p) AR(p),称 Y [ n ] Y[n] Y[n] p p p阶自回归模型

(2)MA模型(移动平均/全极点模型)

如果则如果 p = 0 p=0 p=0(左端仅有一项)
Y [ n ] = b 0 X [ n ] + b 1 X [ n − 1 ] + ⋯ + b q X [ n − q ] Y[n] =b_0X[n]+b_1X[n-1]+\cdots+b_qX[n-q] Y[n]=b0X[n]+b1X[n1]++bqX[nq]
记为 M A ( q ) MA(q) MA(q),称 Y [ n ] Y[n] Y[n] q q q阶移动平均模型

(3)ARMA模型(自回归/全零点模型)

如果则如果 p , q 0 p,q0 p,q0记为 A R M A ( p , q ) ARMA(p,q) ARMA(pq),称 Y [ n ] Y[n] Y[n] ( p , q ) (p,q) (p,q)阶自回归移动平均模型

常系数线性差分方程对应的系统函数 H ( z ) H(z) H(z)
H ( z ) = b 0 + b 1 z − 1 + ⋯ + b q z − q 1 + a 1 z − 1 + ⋯ + a p z − p ) H(z)=\frac{b_0+b_1z^{-1}+\cdots+b_qz^{-q}}{1+ a_1z^{-1}+\cdots+a_pz^{-p}}) H(z)=1+a1z1++apzpb0+b1z1++bqzq)
将随机信号建模为零均值单位方差白噪声激励 H ( z ) H(z) H(z)产生:假设输入随机序列 X [ n ] X[n] X[n]是零均值单位方差白噪声,功率谱为常数 1 1 1,自相关函数为单位脉冲函数 δ ( k ) \delta(k) δ(k),则输出功率谱为
P ( e j ω ) = ∣ b 0 + b 1 e − j ω + ⋯ + b q e − j q ω ∣ 2 ∣ 1 + a 1 e − j ω + ⋯ + a p e − j p ω ∣ 2 P(e^{j\omega})=\frac{|b_0+b_1e^{-j\omega}+\cdots+b_qe^{-jq\omega}|^2}{|1+ a_1e^{-j\omega}+\cdots+a_pe^{-jp\omega}|^2} P(ejω)=1+a1ejω++apejpω2b0+b1ejω++bqejqω2
一旦模型选定,下一步是由给定数据估计参数模型 a i , b j a_i,b_j ai,bj,对于AR模型需要估计 b 0 , a 1 , ⋯   , a p b_0,a_1,\cdots,a_p b0,a1,,ap。基于最小均方误差准则的四种参数估计方法:自相关法(Yule-Walk 法)、协方差法、修正协方差法、Burg法,后两种方法最小化前向加反向预测误差的平方和来求解参数。
a r g    m a x a k ξ M S E arg\;\underset{a_k}{max}\xi_{MSE} argakmaxξMSE
其中 ξ M S E = E { ∣ e ( n ) ∣ 2 } \xi_{MSE}=E\{|{e(n)|}^2\} ξMSE=E{e(n)2}, e ( n ) = x ( n ) − x ^ ( n ) \quad e(n)=x(n)-\widehat x(n) e(n)=x(n)x (n)

自相关法(Yule-Walk 法)

为求解 a k a_k ak,取 ξ M S E \xi_{MSE} ξMSE a k a_k ak求偏导 等于 0 0 0,化简得
∑ l = 1 p a l r x ( k − l ) = − r x ( k ) k = 1 , 2 , ⋯   , p \sum_{l=1}^{p}a_lr_x(k-l)=-r_x(k)\quad k=1,2,\cdots,p l=1palrx(kl)=rx(k)k=1,2,,p
写成矩阵形式为:
R x a = − r x \boldsymbol{R_xa=-r_x} Rxa=rx \quad 参考文献[1]中的式(3.7)
此式被称为线性预测的正则方程(Normal equations),其中 R x \boldsymbol{R_x} Rx是数据 x ( n ) x(n) x(n)的自相关矩阵,是 N ∗ N N*N NN的Hermite、Toeplitz矩阵:
R x = [ r x ( 0 ) r x ∗ ( 1 ) ⋯ r x ∗ ( p − 1 ) r x ( 1 ) r x ( 0 ) ⋯ r x ∗ ( p − 2 ) ⋯ ⋯ ⋯ ⋯ r x ( p − 1 ) r x ( p − 2 ) ⋯ r x ( 0 ) ] \boldsymbol{R_x}= \begin{bmatrix} r_x(0)&r_x^*(1)&\cdots&r_x^*(p-1)\\ r_x(1)&r_x(0)&\cdots&r_x^*(p-2)\\ \cdots&\cdots&\cdots&\cdots\\ r_x(p-1)&r_x(p-2)&\cdots&r_x(0)\\ \end{bmatrix} Rx=rx(0)rx(1)rx(p1)rx(1)rx(0)rx(p2)rx(p1)rx(p2)rx(0)
其中:
r x ( k ) = 1 N ∑ n = k N x ( n ) x ∗ ( n − k ) r_x(k) = \frac{1}{N}\sum_{n=k}^{N}x(n)x^*(n-k) rx(k)=N1n=kNx(n)x(nk) N N N为数据长度, w h e n n < 0 o r n > N , x ( n ) = 0 when\quad n<0\quad or\quad n>N,x(n)=0 whenn<0orn>N,x(n)=0
a = [ a 1 , a 2 , ⋯   , a p ] T a={[a_1,a_2,\cdots,a_p]}^T a=[a1,a2,,ap]T
式中 R x \boldsymbol{R_x} Rx又可以写成
R x = X H X \boldsymbol{R_x}=\boldsymbol X^H\boldsymbol X Rx=XHX
X = [ x ( 0 ) 0 0 ⋯ 0 x ( 1 ) x ( 1 ) 0 ⋯ 0 x ( 2 ) x ( 1 ) x ( 0 ) ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ x ( N ) x ( N − 1 ) x ( N − 2 ) ⋯ x ( N − p + 1 ) 0 x ( N ) x ( N − 1 ) ⋯ x ( N − p + 2 ) ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 0 ⋯ x ( N ) ] \boldsymbol X = \begin{bmatrix} x(0)&0&0&\cdots&0\\ x(1)&x(1)&0&\cdots&0\\ x(2)&x(1)&x(0)&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ x(N) &x(N-1) &x(N-2)&\cdots&x(N-p+1)\\ 0&x(N)&x(N-1)&\cdots&x(N-p+2)\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ 0&0&0&\cdots&x(N)\\ \end{bmatrix} X=x(0)x(1)x(2)x(N)000x(1)x(1)x(N1)x(N)000x(0)x(N2)x(N1)0000x(Np+1)x(Np+2)x(N)
r x \boldsymbol{r_x} rx可以写成 R x = X H X 2 \boldsymbol{R_x}=\boldsymbol X^H\footnotesize{\boldsymbol X_2} Rx=XHX2 X 2 \footnotesize{\boldsymbol X_2} X2 X \boldsymbol{X} X的第二列。
因此正则方程可写为:
X H X a = − X H X 2 \boldsymbol X^H\boldsymbol X\boldsymbol a=-\boldsymbol X^H\footnotesize{\boldsymbol X_2} XHXa=XHX2
即:
X a = − X 2 \boldsymbol X\boldsymbol a=-\footnotesize{\boldsymbol X_2} Xa=X2 \quad 参考文献[2]中的式(4.21)(4.81)(4.123)
利用自相关法估计参数的代码acm.m在这里

协方差法

Reference

1.杨绿溪. 现代数字信号处理[M]. 2007.
2.Hayes M H. Statistical Digital Signal Processing and Modeling[J]. 1996. Chapter 4, 式(4.40) \quad 书中MATLAB代码在这里
3.陈明. 信息与通信工程中的随机过程(第2版)[M]. 2005.

  • 1
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
郑州大学随机信号处理大作业 附程序, Yule-Walker、Burg协方差进行AR模型功率谱估计。楼主拿了90+、4.0。 郑州大学随机信号处理大作业 附程序, Yule-Walker、Burg协方差进行AR模型功率谱估计。楼主拿了90+、4.0。 1.引 1.引言 功率谱佔计是分析、了解信号所含有用信息的工具,也是信 号内在本质的也一种表现形式,功率谱密度(PSD)两数描述了随 机过程的功率随频礻的分布。其评价指标包括客观度量和统计度 量,谱分辨率特性是客观度量中的重要指标,而统计度量指标则 包括方差、均方误差等。 在频谱分析中主要包含两大类方法:古典谱估计和现代谱估 计。占典谱估计包括周期图估计和相关,它们都以傅里叶分 析为理论基础,计算相刈较为简单,但主要存在着分辨率低和性 能不好等问题。现代谱估计采用参数模型化的谱估计方法,通过 构造合适的系统模型,将要分析的随机信号用模型参数来表示, 将其过程化为某系统在白噪声激劢下的输岀。常用的纯连续谱的 平稳随杋信号模型是有理分式模型,方法主要包括最大熵谱佔计、 AR模型、MA模型ARMA模型和最大似然等,其中AR 模型用得较多。在线性估计方法大多是有偏的谱估计方法,谱分 辨率随数据长度的增加而提高。而非线性谱估计方法大多是无偏 的谱估计方法,通常可以获得高的谱分辨率。 本次实验主要利用了经典中的周期图和相关、求解 Yule-Walker方程、 Levinsη- durbin快速算以及Bug算实现 了对信号的功率谱估计。 2.实验原理 2.实验原理 21古典谱估计 相关谱估计是以相关函数为媒介米计算功率谱,又叫做间接 它的理论基础是维纳-辛钦定理,其具体实现步骤如下: 第一步,由获得的N点数据构成的有限长序列xn(n)来估计自相关 哟数,即:f(x) N一1 NAn=0AN(nXN(n+ m) 第二步,由自相关函数的傅里叶变换求功率谱,即Sx(el" 1=-(M-1) Rx(me/wi 以上两步经历了两次截断第一次是估计RX(m)时仅利用了x(n)的 N个观测值,这相当于对ⅹn)加矩形窗截断。该窗是加在数据上的, 般称为加数据窗另一次是估计Sx(e)时仅利用了从-(M1)到M-1)的 Rx(m这相当于对Rx(m加矩形窗截断将Rx(m)截成(2M1)长,这称为 加延时窗式中RX(m)和分别表示对它们和的估值由于M<N使得上 式的运算量不是很大因此在FFT问世之前,相关是最常用的谱估计 方法。相关谱估计的运算框图为: 快速相关 加窗截断 进行FFT 输出 矩形窗截断 除此之外,周期图也可运用于占典谱估计。 首先,由获得的N点数据构成的有限长序列X(n)直接求傅里叶 变换,求得频谱X(e/w 2.实验原理 然后取频普幅度的平方,并除以N,以此作为对x(n)真实功率谱x(e) 的估计,即Sx(em)=3x(em)2。 用框图表示周期图的具体实现过程如下 矩形窗截断 相乘 N点FFT (e 事实上,两种经典的差异主要在于估计相关函数的方法不同 22 Yule-Walker方程矩阵估计 随机信号可以看作是由当前激励白噪声w(n)以及若干次以往信 号ⅹ(nk)的线性组合产生,即所谓自回归模型(AR模型)。系统输出 与系统函数可分别用公式表示为: x()=w(n) auxin k) k=1 H(z 1+∑ 7 k k=1 P阶AR模型有p+1个待定系数a1到ap和系统增益G,由上 式,可得白噪声激劢得到的系统输出 x(n)=-∑2=10kx(n-1)+Gw(n) 该式可以理解为,用n时刻之前的p个值的线性组合来预测n时 刻的值x(n,预测误差为GW(n)。在均方误差最小准则下,组合系数 a1,a2,a3…,ap的选择应使预测误差GWn)的均方值最小经过一系 2.实验原理 列的运算,最终可以得到AR模型的正则方程 r( -k, m= 1, 2 Rx(m) kRx(m -k)+g2, m=0 其中模型参数为 Yule-Walker方程: Rxx(m a kXX k=1 其矩阵形式为: R(0) R(1) R(p-1) R(1) R(1) R R(p-1) 2 R(2) R(p-1)R(p-2) R(0) R(p) 求解Yule硎 Walker方程就可以得到AR模型系数。得到参数az (i=1,23,4.p),就可以根据自相关函数和以求参数求系统增益G。 再由Sye)=Sx(e)*|H(e)2可以得到功率谱。但是这种方法直 接求解线性方程组,运算量较大,同时在用自相关对数据开窗的辶 程中,人为假定了数据段之外的数据为0,在计算过程中引入了误差。 23 Levinson-durbin快速递推 Levinson- durbin递推算

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值