题目描述
给出 R
行 C
列的矩阵,其中的单元格的整数坐标为 (r, c)
,满足 0 <= r < R
且 0 <= c < C
。
另外,我们在该矩阵中给出了一个坐标为 (r0, c0)
的单元格。
返回矩阵中的所有单元格的坐标,并按到 (r0, c0)
的距离从最小到最大的顺序排,其中,两单元格(r1, c1)
和 (r2, c2)
之间的距离是曼哈顿距离,|r1 - r2| + |c1 - c2|
。(你可以按任何满足此条件的顺序返回答案。)
示例 1:
输入:R = 1, C = 2, r0 = 0, c0 = 0
输出:[[0,0],[0,1]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1]
示例 2:
输入:R = 2, C = 2, r0 = 0, c0 = 1
输出:[[0,1],[0,0],[1,1],[1,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2]
[[0,1],[1,1],[0,0],[1,0]] 也会被视作正确答案。
示例 3:
输入:R = 2, C = 3, r0 = 1, c0 = 2
输出:[[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2,2,3]
其他满足题目要求的答案也会被视为正确,例如 [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]]。
提示:
1 <= R <= 100
1 <= C <= 100
0 <= r0 < R
0 <= c0 < C
解题思路
构建一个vector数组,初始化数组中每个元素并计算矩阵中每个点到指定点的曼哈顿距离vector[i,j,distance];
利用sort()函数,自定义排序函数,按照曼哈顿距离进行排序;
排序后将最后一位pop_back();
即可。
具体代码
class Solution {
public:
static bool compare(vector<int>& a, vector<int>& b){
return a[2] < b[2];
}
vector<vector<int>> allCellsDistOrder(int R, int C, int r0, int c0) {
// define the matrix size
int size = R * C;
// define the answer vector
vector<vector<int>>answer;
// define the original vector
vector<vector<int>>temp;
vector<int>tmp(3);
// construct the original vector[i,j,distance]
for(int i = 0; i < R; i++){
for(int j = 0; j < C;j++){
tmp[0] = i;
tmp[1] = j;
tmp[2] = abs(r0 - i) + abs(c0 - j);
temp.push_back(tmp);
// temp.push_back({i,j,abs(r0 - i) + abs(c0 - j)});
}
}
sort(temp.begin(),temp.end(),compare);
for(int i = 0; i < size; i++){
// answer.push_back({temp[i][0],temp[i][1]});
temp[i].pop_back();
}
return temp;
}
};