No.1030 LeetCode题目 “距离顺序排列矩阵单元格”

题目描述

给出 RC 列的矩阵,其中的单元格的整数坐标为 (r, c),满足 0 <= r < R0 <= c < C

另外,我们在该矩阵中给出了一个坐标为 (r0, c0) 的单元格。

返回矩阵中的所有单元格的坐标,并按到 (r0, c0) 的距离从最小到最大的顺序排,其中,两单元格(r1, c1)(r2, c2) 之间的距离是曼哈顿距离,|r1 - r2| + |c1 - c2|。(你可以按任何满足此条件的顺序返回答案。)

示例 1:

输入:R = 1, C = 2, r0 = 0, c0 = 0
输出:[[0,0],[0,1]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1]

示例 2:

输入:R = 2, C = 2, r0 = 0, c0 = 1
输出:[[0,1],[0,0],[1,1],[1,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2]
[[0,1],[1,1],[0,0],[1,0]] 也会被视作正确答案。

示例 3:

输入:R = 2, C = 3, r0 = 1, c0 = 2
输出:[[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2,2,3]
其他满足题目要求的答案也会被视为正确,例如 [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]]

提示:

1 <= R <= 100
1 <= C <= 100
0 <= r0 < R
0 <= c0 < C

解题思路

构建一个vector数组,初始化数组中每个元素并计算矩阵中每个点到指定点的曼哈顿距离vector[i,j,distance];

利用sort()函数,自定义排序函数,按照曼哈顿距离进行排序;

排序后将最后一位pop_back();即可。

具体代码

class Solution {
public:
    static bool compare(vector<int>& a, vector<int>& b){
        return a[2] < b[2];
    }
    vector<vector<int>> allCellsDistOrder(int R, int C, int r0, int c0) {
        
        // define the matrix size
        int size = R * C;

        // define the answer vector
        vector<vector<int>>answer;

        // define the original vector
        vector<vector<int>>temp;
        vector<int>tmp(3);
        
        // construct the original vector[i,j,distance]
        for(int i = 0; i < R; i++){
            for(int j = 0; j < C;j++){
                tmp[0] = i;
                tmp[1] = j;
                tmp[2] = abs(r0 - i) + abs(c0 - j);
                temp.push_back(tmp);
                // temp.push_back({i,j,abs(r0 - i) + abs(c0 - j)});
            }
        }
        sort(temp.begin(),temp.end(),compare);

        for(int i = 0; i < size; i++){
            // answer.push_back({temp[i][0],temp[i][1]});
            temp[i].pop_back();
        }

        return temp;
    }
};

性能结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值