力扣解题思路:最小路径和问题

本文通过解析力扣中的最小路径和问题,详细介绍了动态规划在解决这类问题时的方法,包括二维和一维动态规划数组的应用,并强调了正确理解和初始化数组的重要性。同时,文章比较了不同题目中动态规划的正序和倒序遍历策略,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

64. 最小路径和


思路:题目:
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。其中,次只能向下或者向右移动一步。
显然每一步的路径总和都与上一步有关,那么我们马上能想到使用动态规划解题,首先找到动态方程:

dp[i][j] = Math.min(dp[i-1][j]+grid[i-1][j-1],dp[i][j-1]+grid[i-1][j-1])

然后就可以愉快的写代码了:

public int minPathSum(int[][] grid) {
   
    int[][] dp = new int[grid.length+1][grid[0].length+1];
    for(int i=1;i<grid.length+1;i++){
   
        for(int j=1;j<grid[0].length+1;j++){
   
            dp[i][j] = Math.min(dp[i-1][j]+grid[i-1][j-1],dp[i][j-1]+grid[i-1][j-1]);
        }
    }
    return dp[grid.length][grid[0].length];
}

然后我就在两分钟内写完了,写完一看,不对劲呀,为什么我比所有人的代码都短??于是我运行了一下。。。果然错了/(ㄒoㄒ)/~~
我天真的以为我把动态规划的数组的上侧和左侧填充一下就可以避免手动的去设置初始值,后来发现错了,按照我的这种做法,其实整个grid数组的第一行和第一列都可以作为出发点,然而题目要求只能从grid[0][0]出发,我这种方法相当于只初始化了第一行的第一列,所以出现了问题(dp数组的第一行和第一列被错误的初始化成grid的第0行和第0列了),所以我就老老实实的重新定义dp数组了:

int[][] dp = new int[grid.length][grid[0].length];

这样一看,dp数组的维度和grid数组一样,完全可以用grid数组代替dp数组啊,还能节省空间,于是我在for循环中重新定义了一下边界和动态规划数组的更新方式:

public int minPathSum(int[][] grid) {
   
    for (int row = 0; row < grid.length; row++) {
   
        for (int col = 0; col < grid[0].length; col++) {
   
            if (row == 0 && col == 0) {
   
                continue;
            } else if (row == 0) {
   
                grid[row][col] += grid[row][col - 1];
            } else if (col == 0) {
   
                grid[row][col] += grid[row - 1][col];
            } else {
   
                grid[row][col] += Math.min(grid[row][col - 1], grid[row - 1][col]); 
            }
        }
    }
    return grid[grid.length - 1][grid[0].length - 1];
}

按照二维动态规划数组的思路,其实也可以用一维动态规划数组,数组更新的方式是类似的,此时动态规划数组是按列更新的:

public int minPathSum(int[][] grid) {
   
    if (grid.length == 0 || grid[0].length == 0) {
   
        return 0;
    }
    int m = grid
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值