64. 最小路径和
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小
思路一:动态规划
这是一道典型的动态规划题
dp[i][j]表示从起点到达(i, j)位置的最小路径和,
状态转移方程
dp[i][j] = Math.min(dp[i - 1][j],dp[i][j-1]) + m[i][j];
边界值
dp[i][0] = dp[i-1][0] + m[i][0]
dp[0][j] = dp[0][j-1] + m[0][j]
class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0){
return Integer.MAX_VALUE;
}
int rlen = grid.length;
int clen = grid[0].length;
int[][] dp = new int[rlen][clen];
// 初始化边界值
dp[0][0] = grid[0][0];
for(int i = 1; i < rlen; i++){
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for(int j = 1; j < clen; j++){
dp[0][j] = dp[0][j-1] + grid[0][j];
}
for(int i = 1; i < rlen; i++){
for(int j = 1; j < clen; j++){
dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
}
}
return dp[rlen - 1][clen - 1];
}
}
力扣测试时间为3ms, 空间为42.3MB
复杂度分析:
时间复杂度为O(n*m)
空间复杂度也是O(mn)
注意,
因为这题求的最小值,所以不能用开辟 (ows+1)*(cols+1)个空间来代替边界初始化, 因为在在边界处 Math.min(dp[i-1][j], dp[i][j-1]) 肯定等于0, 那d[i][0]或者dp[0][j]肯定等于grid[i][j], 这是明显错误的。
1 class Solution {
2 public int minPathSum(int[][] grid) {
3 // 动态规划,dp[i][j]表示从起点到达(i,j)经过的路径最小和
4 if(grid == null || grid.length == 0 || grid[0].length == 0){
5 return 0;
6 }
7 int rows = grid.length;
8 int cols = grid[0].length;
9 int[][] dp = new int[rows+1][cols+1];
10 for(int i = 1; i <= rows; i++){
11 for(int j = 1; j <= cols; j++){
12 dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i-1][j-1];
13 }
14 }
15 return dp[rows][cols];
16 }
17 }
但是这题求的是最大值,那么是可以这样做来简化代码的。
思路二:利用一维数组进行动态规划
dp数组大小等于矩阵的列的数目
状态转移方程
dp[j] = dp[0] + grid[i][j]; (j == 0)
dp[j] = Math.min(dp[j], dp[j-1]) + grid[i][j]; (j != 0), 因为dp[j-1]在dp[j]之前就已经计算出来,已经包含了grid[i][j-1], 所以是没有问题的。dp[j](等式左边的dp[j])就相当于是上面的dp[i-1][j], dp[j-1]就相当于上面的dp[i][j-1],
所以dp[j] = Math.min(dp[j], dp[j-1]) + grid[i][j];这时候没问题的。
边界值
dp[j] = dp[j-1] + grid[0][j]; // 初值
1 class Solution {
2 public int minPathSum(int[][] grid) {
3 if(grid == null || grid.length == 0){
4 return Integer.MAX_VALUE;
5 }
6 int rlen = grid.length;
7 int clen = grid[0].length;
8 int[] dp = new int[clen];
9 // 初始化边界值
10 dp[0] = grid[0][0];
11
12 for(int j = 1; j < clen; j++){
13 dp[j] = dp[j-1] + grid[0][j];
14 }
15
16 for(int i = 1; i < rlen; i++){
17 for(int j = 0; j < clen; j++){
18 if(j == 0){
19 dp[j] = dp[0] + grid[i][j]; // 每行第0列元素
20 }else{
21 dp[j] = Math.min(dp[j-1], dp[j]) + grid[i][j];
22 }
23 }
24 }
25 return dp[clen - 1];
26 }
27 }
力扣测试时间2ms, 空间为41.9MB
复杂度分析:
时间复杂度为O(nm)
空间复杂度为O(n), n为列的数目
思路三:无额外空间的动态规划
由于每个grid[i][j]只使用一次,所以完全可以用grid[i][j]来作为dp数组
1 class Solution {
2 public int minPathSum(int[][] grid) {
3 if(grid == null || grid.length == 0){
4 return Integer.MAX_VALUE;
5 }
6 int rlen = grid.length;
7 int clen = grid[0].length;
8
9 // 初始化边界值
10 for(int i = 1; i < rlen; i++){
11 grid[i][0] = grid[i-1][0] + grid[i][0];
12 }
13 for(int j = 1; j < clen; j++){
14 grid[0][j] = grid[0][j-1] + grid[0][j];
15
16 }
17
18 for(int i = 1; i < rlen; i++){
19 for(int j = 1; j < clen; j++){
20 grid[i][j] = Math.min(grid[i-1][j], grid[i][j-1]) + grid[i][j];
21 }
22 }
23 return grid[rlen - 1][clen - 1];
24 }
25 }
力扣测试时间为4ms, 空间为42.5MB
复杂度分析:
时间复杂度为O(nm)
空间复杂度为O(1)
思路参考:
https://leetcode-cn.com/problems/minimum-path-sum/solution/zui-xiao-lu-jing-he-by-leetcode/