力扣解题思路:蓄水池抽样

在处理大量未知长度的数据流时,如何在O(N)的时间复杂度内随机选择m个不重复的元素?本文介绍了蓄水池抽样的算法思想:当接收到第i个数据时,以m/N的概率替换蓄水池中的某个元素,确保每个元素被选中的概率相等。同时,提及了在链表随机节点问题(382. 链表随机节点)和随机数索引问题(398. 随机数索引)中应用蓄水池抽样的解题思路。
摘要由CSDN通过智能技术生成

蓄水池抽样


先简单的介绍一下蓄水池抽样, 可以先看看这篇文章
写得很好,我的介绍就是参考这个文章的~

给定一个数据流,数据流长度N很大,且N直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出m个不重复的数据。

这个场景强调了3件事:
1.数据流长度N很大且不可知,所以不能一次性存入内存。
2.时间复杂度为O(N)。
3.随机选取m个数,每个数被选中的概率为m/N。

第1点限制了不能直接取N内的m个随机数,然后按索引取出数据。第2点限制了不能先遍历一遍,然后分块存储数据,再随机选取。第3点是数据选取绝对随机的保证。

算法思路大致如下:

1.如果接收的数据量小于m,则依次放入蓄水池。
2.当接收到第i个数据时,i >= m,在[0, i]范围内取以随机数d,若d的落在[0, m-1]范围内,则用接收到的第i个数据替换蓄水池中的第d个数据。
3.重复步骤2。

当处理完所有的数据时,蓄水池中的每个数据都是以m/N的概率获得的。
接下来看代码:

int[] reservoir = new int[m];
//init
for (int i = 0; i < reservoir.length; i++){
   
 reservoir[i] = dataStream[i];
}
for (int i = m; i < dataStream.length; i++){
   
 // 随机获得一个[0, i]内的随机整数
 int d = rand.nextInt(i + 1);
 // 如果随机整数落在[0, m-1]范围内,则替换蓄水池中的元素
 if (d < m){
   
     reservoir[d] = dataStream[i];
 }
}

还有文章中提到的分布式蓄水池抽样,可以看一下~:
在这里插入图片描述

382. 链表随机节点

思路:
在这里插入图片描述
大多是人的解法就是遍历一遍所有数据,然后生成随机数得到该节点:

class Solution {
   
    int max
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值