力扣解题思路:128. 最长连续序列

本文探讨了力扣题目128的解题思路,初始尝试使用map和set,但发现效率低下。作者考虑过桶排序,但由于空间复杂度问题放弃。最终,通过优化第一个思路,利用遍历过程中移除元素来避免重复计算,实现线性时间复杂度的解决方案。此外,还提及可以使用并查集方法,但需要自定义数据结构。
摘要由CSDN通过智能技术生成

128. 最长连续序列

思路:在这里插入图片描述
先讲一下我的思路,最开始我的想法就是使用map,从头往后遍历寻找map.get(curNum - 1),后来发现行不通,因为后面出现 curNum - 1 前面无法预知.

所以需要先将全部的数加入到set中,然后再遍历整个数组,从当前数组两边扩散来找,我一想,这两层嵌套循环不得时间复杂度o(n2)啊!不行不行,再换一种思路。

后来我又想到用桶排序的方法,但是考虑到题目所给的测试用例数字太大,太大的数组太浪费空间,所以也放弃了这种想法,还是第一种更靠谱。

那么如何优化第一种思路呢?首先我们可以观察到一个规律,如果我们在遍历某一个数时找到了其最长的子序列,那么我们在遍历这个子序列上任何一个数时都是再重复遍历这个子序列,这是没必要的,所以我们在遍历的同时移除该元素就能使for循环中所有的while加起来只有o(n)的时间复杂度,那么加上for循环,时间复杂度就是o(n+n)=o(n)!!!接下来看代码:

public int longestConsecutive
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
在LeetCode(力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值