LeetCode384. 打乱数组的两种解法:蓄水池抽样和洗牌算法

题目概述:

在这里插入图片描述
题目链接:点我做题

题解

一、蓄水池算法

  用一个数组restate存储原来的状态,然后每次要返回一个随机排列时,首先拷贝原来的状态到数组tmp1,然后创建一个用来返回的ret数组,取每一个元素时,利用蓄水池算法,从tmp1中等可能的取一个元素,放到对应位置,然后从tmp1中删除该元素,循环往复即可。
  至于怎么实现蓄水池算法,遍历一遍tmp1数组,对每一个下标i,生成一个[0,i+1)的随机数,如果这个随机数是0了,那么就让待插入ret的变量waitpush = tmp1[i],然后接着往下遍历。
  根据概率知识可知,下标为i的元素在循环后称为插入ret的元素的条件是下标为i的元素的那一轮随机数等于0且下标 i + 1... s i z e − 1 i + 1...size - 1 i+1...size1的随机数都不等于0,且他们是互斥的,概率等于:
1 i i i + 1 . . . s z − 1 s z = 1 s z \frac{1}{i}\frac{i}{i+1}...\frac{sz-1}{sz}=\frac{1}{sz} i1i+1i...szsz1=sz1
  所以每个元素插入ret中的概率都是 1 s z \frac{1}{sz} sz1 s z sz sz是当前tmp1数组的元素个数,所以取到这个元素后把这个元素移除就行,循环往复,就可以等概率的从所有排列中得到一组随机排列。

class Solution {
public:
    Solution(vector<int>& nums) 
    {
        restate = nums;
        _size = nums.size();
    }
    
    vector<int> reset() 
    {
        return restate;
    }
    
    vector<int> shuffle() 
    {
        vector<int> ret(_size);
        vector<int> tmp1(restate);
        int cnt = 0;
        while (cnt != _size)
        {
            int waitpush = 0;
            for (int i = 0; i < tmp1.size(); i++)
            {
                if (rand() % (i + 1) == 0)
                {
                    waitpush = tmp1[i];
                }
            }
            ret[cnt++] = waitpush;
            tmp1.erase(find(tmp1.begin(), tmp1.end(), waitpush));
        }
        return ret;
    }
private:
    vector<int> restate;
    int _size;
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)

二、洗牌算法

  对于待插入元素下标为i时,我们生成一个 [ i , s z − 1 ] [i,sz-1] [i,sz1]的随机数 j j j,然后把j下标对应元素和i下标对应元素交换即可。
  这是什么道理呢,我们这样想,一个随机的排列,由排列组合的知识可知,第一个位置相当于从所有的sz个元素中随机取一个元素放到这里,第二个位置相当于从剩下下的sz-1个元素中找一个元素放到这个位置…
  由数学归纳法可以证明,任何一个元素x出现在任何一个0~sz-1的下标的概率都为 1 s z \frac{1}{sz} sz1
设 总 共 有 n 个 元 素 当 下 标 i 等 于 0 时 , 任 意 一 个 元 素 出 现 在 0 位 置 的 概 率 显 然 是 1 n ; 下 标 i 等 于 1 时 , 任 意 一 个 元 素 出 现 在 位 置 的 概 率 是 不 出 现 在 0 位 置 且 在 这 一 轮 被 抽 到 的 概 率 ; 即 n − 1 n ∗ 1 n − 1 = 1 n 当 下 标 i 等 于 k 时 , 任 意 一 个 元 素 出 现 在 k 位 置 的 概 率 是 之 前 轮 都 没 有 抽 到 这 一 轮 抽 到 了 的 概 率 的 乘 积 即 1 n − k ∗ ∏ i = n n − k + 1 ( 1 − 1 i ) = 1 n − k ∗ n − k n = 1 n 设总共有n个元素\\ 当下标i等于0时,任意一个元素出现在0位置的概率显然是\frac{1}{n};\\ 下标i等于1时,任意一个元素出现在位置的概率是不出现在0位置且在这一轮被抽到的概率;\\ 即\frac{n-1}{n}*\frac{1}{n-1} = \frac{1}{n}\\ 当下标i等于k时,任意一个元素出现在k位置的概率是之前轮都没有抽到这一轮抽到了的概率的乘积\\ 即\frac{1}{n-k}*\prod_{i=n}^{n-k+1}(1-\frac{1}{i})\\ =\frac{1}{n-k}*\frac{n-k}{n}=\frac{1}{n} ni00n1;i10;nn1n11=n1ikknk1i=nnk+1(1i1)=nk1nnk=n1
代码:

class Solution {
public:
    Solution(vector<int>& nums):_origin(nums)
    {
    }
    
    vector<int> reset() 
    {
        return _origin;
    }
    
    vector<int> shuffle() 
    {
        int sz = _origin.size();
        vector<int> ret(_origin);
        for (int i = 0; i < sz; i++)
        {
            //生成[i, n - 1]的一个随机数作为本次选中的下标
            int j = rand() % (sz - i) + i;
            int tmp = ret[j];
            ret[j] = ret[i];
            ret[i] = tmp;
        }
        return ret;
    }
private:
    vector<int> _origin;
};

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值