杭电oj HDOJ 2084 数塔(动态规划 DP)

杭电oj HDOJ 2084 数塔

题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=2084

Problem Descripition

在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:

有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?在这里插入图片描述
已经告诉你了,这是个DP的题目,你能AC吗?

Input

输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。

Output

对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。

解题思路

非常典型的DP问题,先用一个二位数组来存储整个数塔。
n u m = [ 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16 ] num=\left[ \begin{matrix} 9 \\ 12 & 15 \\ 10 & 6 & 8 \\ 2 & 18 & 9 & 5 \\ 19 & 7 & 10 & 4 & 16 \\ \end{matrix} \right] num=9121021915618789105416
由于“左对齐”的原因,数塔的形状有些“变形”,但是对照原图可以知道,(我们约定把数组的第5行第3列表示成“5,3”)如果一个“求和”的路线走到了数组的“5,3”,那么一定是从“4,2”到“5,3”或从“4,3”到“5,3”,换句话说如果“回溯”的话,“5,3”只能回溯到“4,2”或“4,3”。进而假设dp(5,3)为以“5,3”为最后结点的最大数字之和,那么dp(5,3)就等于dp(4,2)与dp(4,3)二者之间的最大值加上“5,3”表示的值,同理dp(“4,2”)等于dp(“3,1”)与dp(“3,2”)二者之间的最大值加上“4,2”表示的值,继续如此操作就可以把问题不断地向上“回溯”。经过推广的“公式”可以表示为:
d p ( i , j ) = m a x { 左 上 回 溯 : d p ( i − 1 , j − 1 ) 正 上 回 溯 : d p ( i − 1 , j ) } + n u m [ i ] [ j ] dp(i,j)=max\begin{Bmatrix} 左上回溯:dp(i-1,j-1)\\ 正上回溯:dp(i-1,j) \end{Bmatrix}+num[i][j] dp(i,j)=max{dp(i1,j1)dp(i1,j)}+num[i][j]
接下来寻找回溯的终点,当以最上方的“1,1”为最后节点时,不能再向上回溯,最大值就是其本身,即dp(1,1) = 9。

是否存在特殊的“回溯”情况:

  1. 当目前点处于第一列时,只能向正上“回溯”
    d p ( i , j ) = d p ( i − 1 , j ) + n u m [ i ] [ j ] dp(i,j)=dp(i-1,j)+num[i][j] dp(i,j)=dp(i1,j)+num[i][j]
  2. 当目前点的“行数”和列数相等时,只能向左上“回溯”
    d p ( i , j ) = d p ( i − 1 , j − 1 ) + n u m [ i ] [ j ] dp(i,j)=dp(i-1,j-1)+num[i][j] dp(i,j)=dp(i1,j1)+num[i][j]

根据以上分析则可以写出本题DP的“递归函数”:

int dp(int i, int j)
{
	int temp1, temp2;
	// 数塔的高度只有1,最大和就是其本身
	if (i == 1 && j == 1) {
		return num[1][1];
	}
	// 当位置坐标在最左侧时,只能回溯到正上方的坐标
	else if (j == 1){
		return dp(i - 1, j) + num[i][j];
	}
	// 当位置坐标在数塔正方形的对角线上时,只能回溯到左上角的坐标
	else if (i == j) {
		return dp(i - 1, j - 1) + num[i][j];
	}
	else {
		// 回溯到左上角的坐标
		temp1 = dp(i - 1, j - 1);
		// 回溯到正上方的坐标
		temp2 = dp(i - 1, j);
		return max(temp1, temp2) + num[i][j];
	}
}

求出最后一行每个点的dp(i,j),他们其中的最大值就是这个数塔所要求的最大值。

结果不出所料,超时!!!所以考虑使用“动态规划表”求解!

用一个二维数组dp[][]来记录动态规划的计算过程,dp[i][j]就对应dp(i,j)的含义,所以 d p [ 1 ] [ 1 ] = 9 dp[1][1]=9 dp[1][1]=9,接着利用上面总结出的公式可以不断地向下递推填写,直到写出一个与原数塔相同规格的矩阵
d p = [ 9 21 24 31 30 32 33 49 41 37 52 56 59 45 53 ] dp=\left[ \begin{matrix} 9 \\ 21 & 24 \\ 31 & 30 & 32 \\ 33 & 49 & 41 & 37 \\ 52 & 56 & 59 & 45 & 53 \\ \end{matrix} \right] dp=92131335224304956324159374553
最后一行元素中的最大值就是这个数塔所要求的最大值,即59!“动态规划表”的好处就是时间复杂度小于递归函数的方法,不会造成“超时”的结果!

C++代码

#include <iostream>
using namespace std;

int main()
{
	int C, N, i, j, k, num[101][101], dp[101][101], temp1, temp2, max;
	cin >> C;
	for (i = 0; i < C; i++) {
		cin >> N;
		for (j = 1; j <= N; j++) {
			for (k = 1; k <= j; k++) {
				cin >> num[j][k];
			}
		}
		// 数塔的高度只有1,最大和就是其本身
		dp[1][1] = num[1][1];
		for (j = 2; j <= N; j++) {
			for (k = 1; k <= j; k++) {
				// 当位置坐标在最左侧时,只能上溯到正上方的坐标
				if (k == 1) {
					dp[j][k] = dp[j - 1][k] + num[j][k];
				}
				// 当位置坐标在数塔正方形的对角线上时,只能上溯到左上角的坐标
				else if (k == j) {
					dp[j][k] = dp[j - 1][k - 1] + num[j][k];
				}
				else {
					// 上溯到正上方的坐标
					temp1 = dp[j - 1][k];
					// 上溯到左上角的坐标
					temp2 = dp[j - 1][k - 1];
					if (temp1 > temp2) {
						dp[j][k] = temp1 + num[j][k];
					}
					else {
						dp[j][k] = temp2 + num[j][k];
					}
				}
			}
		}
		max = dp[N][1];
		for (j = 2; j <= N; j++) {
			if (dp[N][j] > max) {
				max = dp[N][j];
			}
		}
		cout << max << endl;
	}
	return 0;
}

代码通过HDOJ平台运行检查,如发现错误,欢迎指出和纠正,谢谢!

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值