拓展欧几里得证明

看了许久书终于从似懂非懂走了出来

设ax+by=gcd(a,b),解出符合条件的x,y;
当b=0时,很显然有一组必然解,x=1,y=0,即1a+00=gcd(a,b)=a;
即我们讨论b!=0的情况;

ax+by=gcd(a,b)=gcd(b,a%b);

令一组解x1,y1使得x1b+y1(a%b)=gcd(b,a%b) =gcd(a,b) = ax+by;
a/b=k…r,k=a/b下取整,所以a%b=a-(a/b向下取整
b);

所以x1*b+y1( a-(a/b向下取整 ) b) 化简得
y1
a+b(x1-y1(a/b向下取整))
所以x=y1,y=x1-y1(a/b向下取整)

x1,y1,在下层已经求得,从而递推出x,y,最下面一层的解为x=1,y=0;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
exgcd(int a,int b,int &d,int &x,int &y){
    if(!b){x=1,y=0;d=a};
    else{
        exgcd(b,a%b,d,x,y);
        int t=x; x=y; y=t-y*(a/b);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值