Spark系统架构(Standalone模式)

本文介绍了Spark系统架构的Standalone模式,包括其与local模式的区别。详细阐述了Standalone模式的组成部分,如Driver进程、Executor对象、Task对象和Worker进程等。还解答了Spark支持的部署模式,以及Standalone部署模式与Hadoop MapReduce部署模式的区别。

Spark系统架构(Standalone模式)

local模式:本地运行模式,通常不是集群环境

Standalone模式:Spark本身支持的一种集群环境,一个主节点(master node),多个工作节点(worker node)

在这里插入图片描述

从上图可知,Standalone模式有如下组成部分:

Driver进程: 位于Master节点中,是指实际运行Spark应用中main()函数的进程,官方解释为“The process running the main() function of the application an creating the SparkContext”。Driver节点负责将逻辑处理流程翻译为物理执行计划,放入各个Task对象执行。(此处不清楚什么是逻辑处理流程什么是物理执行计划的话,可以简单理解为逻辑处理流程是程序员想要做的事,物理执行计划是计算机实现程序员想要做的事情的方法)

Executor对象:也称为Spark执行器,是Spark计算资源的一个单位。Executor在物理上是一个JVM进程,可以运行多个任务(task,任务是JVM中的一个线程)。Executor的创建是由Master节点决定的。Master节点接受到应用后首先会通知Worker节点启动Executor。Executor对象实质是存在于CoarseGrainedExecutorBackend进程中,起这么长的名字主要是为了防止命名冲突。

Task对象:即Spark应用的计算任务。Driver在运行Spark应用时,会将应用拆分为多个计算任务,然后分配给多个Executor执行。task是Spark中最小的计算单位,不能再拆分。task以线程的方式运行在Executor进程中,执行具体的计算任务,如map算子、reduce算子等。

Worker进程:每个Worker进程上存在一个或者多个ExecutorRunner对象。每个ExecutorRunner对象管理一个Executor。Executor持有一个线程池,每个线程执行一个task。Worker进程通过持有ExecutorRunner对象来控制CoarseGrainedExecutorBackend进程的启停。

相关知识问答:

1.Spark支持哪集中部署模式?

答:四种Local模式,Standalone模式,YARN部署模式和Mesos模式

2.Spark的Standalone部署模式和Hadoop MapReduce部署模式的区别?

答:两者基本相似,唯一的区别是Hadoop MapReduce部署模式为每个task启动一个JVM进程运行,而且是在task将要运行时启动JVM,而Spark是预先启动资源容器(Executor JVM),然后当需要执行task时再ExecutorJVM里启动task线程运行。

<think> 首先,用户的问题是关于Spark Standalone集群中修改通信时间的方法。关键点是“通信时间”,我认为这可能指的是Spark组件之间的网络通信超时设置。 回顾提供的引用: - 引用[1]讨论了Standalone模式的基本架构和提交方式(client/cluster)。 - 引用[2]提到提交任务的命令。 - 引用[3]详细描述了spark-env.sh配置文件的内容,包括端口设置如SPARK_MASTER_PORT, SPARK_WORKER_PORT等。 - 引用[4]是关于安装Spark的步骤。 用户的问题是“修改通信时间”,在Spark上下文中,这很可能指的是网络超时设置。常见的相关属性包括: - spark.network.timeout:控制所有网络交互的超时时间。 - spark.executor.heartbeat.interval:执行器向驱动程序发送心跳的间隔。 - spark.core.connection.ack.wait.timeout:连接应答等待超时。 这些属性通常在Spark的配置文件中设置,比如spark-defaults.conf或spark-env.sh。 在引用[3]中,提到了spark-env.sh的配置,但没有直接列出超时设置。所以,我需要引导用户如何添加这些配置。 系统级指令: - 所有行内数学表达式使用$...$格式,但这里没有数学内容,所以可能不需要。 - 独立公式使用$$...$$,但问题不需要公式。 - LaTeX语法正确:确保任何代码或配置语法正确。 - 使用中文回答。 - 生成相关问题:在回答末尾添加相关问题。 - 引用标识:在引用的段落末尾添加引用标识如[^1]。 用户提到“请尽可能多的参考用户上一次的问题和你的回答”,但在这个对话中,这是第一个用户消息,所以没有上一次的回答。系统提示说“上述引用仅供参考”,所以我应该基于这些引用回答。 结构化我的回答: 1. **理解问题**:确认用户想修改通信时间(超时设置)。 2. **解释相关配置**:在网络超时设置中,关键属性如spark.network.timeout。 3. **步骤**:如何修改: - 编辑配置文件如spark-defaults.conf或spark-env.sh。 - 添加或修改属性。 - 重启集群应用更改。 4. **参考引用**:引用[3]提到了spark-env.sh的配置示例,我可以基于此。 5. **示例**:给出一个配置示例。 6. **生成相关问题**:在末尾添加相关问题。 回答结构: - 先用中文清晰解释。 - 提供具体步骤。 - 结束时添加相关问题。 相关问题例子: 1. Spark Standalone模式中如何配置日志存储? 2. 如何优化Spark集群的性能? 3. Spark的其他部署模式有哪些? 确保语言专业、准确。 </think> ### Spark Standalone集群中修改通信时间的方法 在Spark Standalone模式部署的集群中,通信时间主要指网络交互的超时设置,例如驱动程序(Driver)、主节点(Master)和工作节点(Worker)之间的心跳检测和数据传输超时。这些设置通过Spark的配置文件调整,关键属性如 `spark.network.timeout`(控制所有网络操作的总超时)、 `spark.executor.heartbeat.interval`(执行器心跳间隔)和 `spark.core.connection.ack.wait.timeout`(连接应答等待超时)。默认值通常较短(如120秒),在大型集群或网络延迟较高环境中可能导致任务失败,因此需要适当延长。 以下是修改通信时间的详细步骤(基于引用[3]的配置文件架构): #### 步骤1: 编辑Spark配置文件 Spark Standalone集群的通信配置主要在 `spark-defaults.conf` 或 `spark-env.sh` 文件中设置。推荐使用 `spark-defaults.conf` 作为标准方式,因为它支持所有Spark属性: - **配置文件位置**:通常在Spark安装目录的 `conf` 子目录下,例如 `/export/server/spark-standalone/conf/spark-defaults.conf`。 - **修改方法**: - 打开文件:使用文本编辑器(如 `vim`)打开配置文件。 ```bash vim /export/server/spark-standalone/conf/spark-defaults.conf ``` - 添加或修改超时属性:在文件中添加以下行,调整时间值(单位:秒)。例如,将网络超时设置为300秒(5分钟),以适应高延迟环境: ```properties spark.network.timeout 300s spark.executor.heartbeat.interval 100s spark.core.connection.ack.wait.timeout 600s ``` - `spark.network.timeout`:所有网络操作的局超时(默认120s)。增加后可减少因网络波动导致的连接断开。 - `spark.executor.heartbeat.interval`:执行器向驱动程序发送心跳的间隔(默认10s),设置过长可能延迟故障检测,建议在100s-300s之间。 - `spark.core.connection.ack.wait.timeout`:等待连接确认的最大时间(默认60s),在数据传输量大时可适当延长。 - **说明**:如果文件不存在,需从
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值