数据挖掘与机器学习
文章平均质量分 79
粉色系
这个作者很懒,什么都没留下…
展开
-
机器学习算法技能图谱
机器学习算法应用行业:推荐系统:解决海量数据场景下信息高效匹配分发的问题,如候选集召回,结果排序,以及用户画像等。广告系统:和推荐系统相类似,但也有显著的差异,需要在考虑平台和用户之外,同时考虑广告主的利益,两方变成了三方,使得一些问题变得更加复杂。搜索系统:搜索系统的基础建设和上层排序方面,均大量使用了机器学习技术。在网站和 App 中,搜索是非常重要的流量入口,因此,机器学习对搜索系统的...转载 2018-11-24 11:16:03 · 720 阅读 · 0 评论 -
决策树
决策树它就可以做分类,也可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。两者的参数定义几乎完全相同,但是意义不全相同。下面是两者区别参数DecisionTreeClassifierDecisionTreeRegressor特征选择标准criterion可以使用基尼系数"g...原创 2018-11-25 17:24:19 · 887 阅读 · 0 评论 -
线性回归
线性回归它是通过拟合最佳直线来建立自变量和因变量的关系。最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。线性回归的两种主要类型是一元线性回归和多元线性回归。一元线性回归的特点是只有一个自变量。多元线性回归的特点正如其名,存在多个自变量。找最佳拟合直线的时候,你可以拟合到多项或者曲线回归。这些就被叫做多项或曲线回归。用UCI大学公开的机器学习数据来举例子该数据集包含从联...原创 2018-11-24 18:39:33 · 745 阅读 · 0 评论 -
逻辑回归
逻辑回归是一种广义线性回归模型,是分类算法而不是一个回归算法。它是根据已知的一系列因变量估计离散数值(比方说二进制数值 0 或 1 ,是或否,真或假)。y=f(x∗w+b)y=f(x∗w+b)其中w是训练得到的权重参数(Weight);x是样本特征数据;b是偏置(Bias),f成为激活函数。简单来说,它通过将数据拟合进一个逻辑函数来预估一个事件出现的概率。因此,它也被叫做逻辑回归。因为它预估...原创 2018-11-24 22:24:21 · 294 阅读 · 0 评论 -
机器学习分类
监督学习监督学习是从标记的训练数据来推断一个功能的机器学习任务。训练数据包括一套训练示例。在监督学习中,每个实例都是由一个输入对象(通常为矢量)和一个期望的输出值(也称为监督信号)组成。监督学习算法是分析该训练数据,并产生一个推断的功能,其可以用于映射出新的实例。主要有:KNN线性回归logistics回归SVM决策树和随机森林非监督学习非监督学习是在未加标签的数据中,试图找到...原创 2018-11-26 22:36:45 · 251 阅读 · 0 评论