R语言描述性统计

R语言描述性统计

在做数据分析时,一般先会对数据进行描述性统计分析,以便于描述该数据的各种特征及其所代表的总体的特征。描述性统计分析包括对数据的集中趋势、离散程度以及分布进行分析。

集中趋势统计量: 均值(Mean)、中位数(Median)、众数(Mode)、百分位数

离散趋势统计量:标准差(sd)、方差(var)、极差(range)、变异系数(CV)、标准误、样本校正平方和(CSS)、样本未校正平方和(USS)

分布情况统计量:偏度、峰度

统计量函数
均值mean(x, …);mean(x, trim = 0, na.rm = FALSE, …)
中位数median(x, …);median(x, trim = 0, na.rm = FALSE, …)
频数table(x, …)
众数which.max(table(x))
五数/描述统计summary(x, …);fivenum(x, …)
方差var(x, na.rm = FALSE)
标准差sd(x, na.rm = FALSE)
偏度需要先加载moments包或fBasic包,再用函数skewness()
峰度需要先加载moments包或fBasic包,再用函数kurtosis()
极差range(…, na.rm = FALSE)

注:

  • trim可设为(0,0.5)之间的值,表示删除x的最大和最小百分几的数,然后对剩下数进行计算,得到的平均值为截尾均值;na.rm表示计算前是否删除NA值
  • summary()与fivenum()计算得出的第一四分位和第三四分位可能会略有不同,原因如下:
    fivenum()是从所有数中找出小于中位数的数,将这些数的中位数设为第一四分位;同理,从所有数中找出大于中位数的数,将这些数的中位数设为第三四分位。因此 fivenum()得到的第一四分位和第三四分位分别被称为四分位低值、四分位高值。
  • 偏度衡量数据的对称性。
    在这里插入图片描述
    若为负,则数据均值左侧的离散度比右侧强,左偏;若为正,则数据均值左侧的离散度比右侧弱,右偏。
    左偏、右偏
  • 峰度 研究数据分布陡峭或平滑的统计量,通过对峰度系数的测量,我们能够判定数据分布相对于正态分布而言是更陡峭还是平缓。峰值越大,分布越陡峭。
    在这里插入图片描述
    正态分布的峰度系数为3,而均匀分布的峰度为1.8(但是SPSS等软件为了方便比较,先将峰度减去3处理,再将正态分布峰度值定为0)。
    当峰度系数>0,从形态上看,它相比于正态分布要更陡峭或尾部更厚;而峰度系数<0,从形态山看,则它相比于正态分布更平缓或尾部更薄。在实际环境当中,如果一个分部是厚尾的,这个分布往往比正态分布的尾部具有更大的“质量”,即含又更多的极端值。
    在这里插入图片描述
    拉帕拉斯(D),双曲正割(S),逻辑斯底(L)分布的峰度系数均大于0,且他们的峰更陡峭,同时尾部也更厚。而像升余弦©分布,半圆形(W)分布,以及均匀分布U则是峰度系数<0
  • 极差(Range): 描述样本分散性的数字特征.当数据越分散,其极差越大,R函数语法: range(…, na.rm = FALSE),计算公式为:
    在这里插入图片描述
  • 变异系数(CV): 又称离散系数,是刻划数据相对分散性的一种度量,它是一个无量钢的量,用百分数表示,R无对应函数,计算公式为:
    在这里插入图片描述
  • 样本校正平方和(CSS):无R函数,计算公式:
    在这里插入图片描述
  • 样本未校正平方和(USS): 无R函数,计算公式:
    在这里插入图片描述
  • 四分位差(quartile deviation):也称为内距或四分间距(inter-quartile range),它是上四分位数(QL)与下四分位数(QU)之差,通常用Qd表示。计算公式为:
    在这里插入图片描述
  • 标准误:均值标准误差就是样本均值的标准差,是描述样本均值和总体均值平均偏差程度的统计量,计算公式为:
    在这里插入图片描述
相关推荐
<p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;"><strong>课程目标</strong></span></p> <p> </p> <p><span style="font-size: 18px;">从零开始掌握Premiere影视剪辑的基础知识,学会</span><span style="font-size: 18px; color: #e53333;"><span style="color: #e53333;"><strong>视频剪辑+影视特效+视频调色+字幕制作</strong></span></span></p> <p> </p> <p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;">适用人群</span></p> <p> </p> <p><span style="font-size: 18px;">PR零基础小白,在校大学生,职场新人,想成为影视剪辑、影视后期、短视频制作、自媒体等高手的朋友。</span></p> <p> </p> <p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;">课程简介</span></p> <p> </p> <p><span style="font-size: 18px;">课程以新版PR 2020讲解,可使用PR任意版本学习,绝大多数功能兼容旧版,但强烈建议使用新版本。</span></p> <p><span style="font-size: 18px;">【Adobe认证专家讲师精耕细作精品教程,非学院派照本宣科软件操作教程,以任务为导向,面向实际应用场景,每一章都能学会实打实的高手技能,讲解细致,小白也能轻松入门成大神!】</span></p> <p><span style="font-size: 18px;">课程好不好,看过就知道,前面的免费章节欢迎试看。</span></p> <p><span style="font-size: 18px;">本课程学习不需要任何PR基础,只需要电脑操作基础即可。兼容Windows和Mac操作系统,同时讲解两种系统下的快捷键操作,不用担心操作上的障碍问题。</span></p> <p> </p> <p><span style="font-size: 24px; background-color: #e53333; color: #ffffff;">课程特色</span></p> <p> </p> <p><span style="font-size: 18px;">1、以实际PR影视编辑与特效的流程为导向,绝大多数内容都是为了完成某个具体任务,而不是为了讲解某个软件操作而凑数。</span></p> <p><span style="font-size: 18px;">2、不同于国内多数教程和书籍,每个知识点务求讲精、讲透,帮助你掌握PR的精髓,而非软件操作上的皮毛,让你真正学到PR的本质,一次学习,终身受用,少走弯路,节约生命。</span></p> <p><span style="font-size: 18px;">3、课程会随PR新版本的推出持续更新,不必担心有新功能却不知道怎么用。</span></p> <p><span style="font-size: 18px;">4、充足的练习题和作业题,让你在不断的练习和挑战中提升PR技能。</span></p> <div> <p> </p> <p><img src="https://img-bss.csdnimg.cn/202009230003497469.png" alt="" width="880" height="2635" /><img src="https://img-bss.csdnimg.cn/202009230004006917.png" alt="" width="880" height="2635" /><img src="https://img-bss.csdnimg.cn/202009230004102289.png" alt="" width="880" height="2635" /><img src="https://img-bss.csdnimg.cn/202009230004197845.png" alt="" width="880" height="1445" /></p> </div>
<span> </span> <div> 以通俗简介的方式,从浅入深介绍SVM原理和代码流程 让你从此不再惧怕SVM <br /> </div> <div> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="color:#E53333;">视频部分:</span></strong> </p> </div> 01_SVM之回顾梯度下降原理<br /> 02_SVM之回顾有约束的最优化问题<br /> 03_SVM之回顾有约束的最优化问题-KKT几何解释<br /> 04_SVM之回顾有约束的最优化问题-KKT数学解释<br /> 05_SVM之回顾距离公式和感知器模型<br /> 06_SVM之感知器到SVM的引入<br /> 07_SVM之线性可分时损失函数的表示<br /> 08_SVM之线性可分时损失函数的求解-对w,b变量求偏导<br /> 09_SVM之线性可分时损失函数的求解-对β变量求解.<br /> 10_SVM之线性可分时算法整体流程<br /> 11_SVM之线性可分时案例<br /> 12_SVM之线性不可分时软间隔介绍<br /> 13_SVM之线性不可分时软间隔优化目标<br /> 14_SVM之线性不可分时软间隔算法整体流程<br /> 15_SVM之线性不可分时数据映射高维解决不可分问题<br /> 16_SVM之线性不可分时核函数引入<br /> 17_SVM之线性不可分时核函数讲解<br /> 18_SVM代码之线性可分时和Logistic回归比较<br /> 19_SVM代码之基于鸢尾花数据多分类参数解释<br /> 20_SVM代码之基于鸢尾花数据网格搜索选择参数<br /> 21_SVM代码之不同分类器,核函数,C值的可视化比较<br /> <p> 22_SVM之回归方式SVR </p> <p> 23_SVM代码之SVR解决回归问题 </p> 24_SVM之SMO思想引入<br /> <p> 25_SVM之SMO案列讲解 </p> <p> <br /> </p> <p> <strong><span style="color:#E53333;">代码部分:</span></strong> </p> <p> <img src="https://img-bss.csdn.net/202005090648425294.png" alt="" /> </p> <p> <br /> </p> <p> <strong><span style="color:#E53333;">资料部分:</span></strong> </p> <p> <img src="https://img-bss.csdn.net/202005090649458459.png" alt="" /> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页