描述点云数据管理中点云压缩,点云索引(KDtree、Octree),点云LOD(金字塔),海量点云的渲染算法 描述点云数据管理中点云压缩,点云索引(KDtree、Octree),点云LOD(金字塔),海量点云的渲染算法
描述点云分割中基于点的分类,基于分割的分类,监督分类与非监督分类算法原理 是指对每个点进行独立分类,无需考虑点之间的关系。常见的基于点的分类算法包括K-最近邻(K-NN)、支持向量机(SVM)和随机森林(Random Forest)等。这些算法的基本思想是通过提取点的特征,如颜色、形状、法向量等,然后将其输入到分类器中进行分类。:pcl::KdTreeFLANN、pcl::SVM、pcl::RandomForest等。基于分割的分类算法通常使用点云分割算法来获得不同的区域或物体,然后对每个区域或物体进行独立分类。如:pcl::SVM、pcl::DecisionForest等。
描述点云特征提取中法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image的算法原理 描述点云特征提取中法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image的算法原理