5.10-5.11整数拆分+不同的二叉搜索树

343.整数拆分

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

思路

对于正整数n当n>=2时,可以拆分成至少两个正整数的和,令x是拆分出的第一个正整数,剩下的部分是n-x,n-x可以不继续拆分,或者继续拆分成至少两个正整数的和。由于每个正整数对应的最大乘积取决于比它小的正整数对应的最大乘积,因此可以使用动态规划求解。

动态规划法

创建数组dp,其中dp[i]表示将整数i拆分成若干个正整数的和之后,这些正整数的最大乘积。0不是正整数,1是最小的正整数,都不能拆分,所以dp[0],dp[1]初始化为0。

当i>=2时,假设对i拆分出的第一个数为j,则有两种方案:

1、将i拆分成j和i-j的和,且i-j不再拆分为多个正整数,此时乘积为j*(i-j)

2、将i拆分成j和i-j的和,且i-j继续拆分为多个正整数,此时乘积为j*dp[i-j]

因此,当j固定时,有dp[i]=max{j*(i-j),j*dp[i-j]},由于j的取值范围为1到i-1,所以需要遍历所有j的可能取值找到dp的最大值,可以得出dp的状态转移方程如下:

dp[i]=(1≤j<i)max​{max(j×(i−j),j×dp[i−j])}.

代码
    class Solution {
        public int integerBreak(int n) {
            int[] dp=new int[n+1];
            //dp[0]=dp[1]=0;
            for(int i=2;i<=n;i++){
                int curMax=0;
                for(int j=1;j<i;j++){
                    curMax=Math.max(curMax,Math.max((i-j)*j,dp[i-j]*j));
                }
                dp[i]=curMax;
            }
            return dp[n];
        }
    }

动态规划优化

看了半天题解,手写了半天推导,还是放弃了,不知道这种优化第一次做怎么可能想得出来数学证明。

主要思路就是,只需要考虑j=2和j=3的情况。

代码
class Solution {
    public int integerBreak(int n) {
        if (n <= 3) {
            return n - 1;
        }
        int[] dp = new int[n + 1];
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            dp[i] = Math.max(Math.max(2 * (i - 2), 2 * dp[i - 2]), Math.max(3 * (i - 3), 3 * dp[i - 3]));
        }
        return dp[n];
    }
}

贪心(数学法)

代码
class Solution {
    public int integerBreak(int n) {
        if (n <= 3) {
            return n - 1;
        }
        int quotient = n / 3;
        int remainder = n % 3;
        if (remainder == 0) {
            return (int) Math.pow(3, quotient);
        } else if (remainder == 1) {
            return (int) Math.pow(3, quotient - 1) * 4;
        } else {
            return (int) Math.pow(3, quotient) * 2;
        }
    }
}

96.不同的二叉搜索树

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

思路

代码

    class Solution {
        public int numTrees(int n) {
            int[] dp=new int[n+1];
            dp[1]=dp[0]=1;
            for(int i=2;i<=n;i++){
                for(int j=1;j<=i;j++){
                    dp[i]+=dp[j-1]*dp[i-j];
                }
            }
            return dp[n];
        }
    }

### 回答1: 题目:整数ncm之间的素数个数是多少个? 答案:这是一个关于素数计数的问题,可通过使用素数筛法来解决。根据素数筛法,可以先生成2到n的所有数,并将所有的合数筛掉,最后留下的就是所有的素数。因此,可以用这种方法来统计n到m之间的素数个数。 ### 回答2: 这道C语言习题要求我们编写一个程序,计算给定的两个整数n和m之间所有素数的个数。算法的基本思路是从n到m逐个判断每个整数是否是素数,若是,则计数器加1。 首先,判断一个整数是否为素数,可以通过判断从2到其平方根之间的所有整数是否能整除该数来确定。如果存在一个数能整除该数,则它不是素数;否则它是素数。在C语言中,可以使用for循环来实现这一判断过程。具体实现代码如下: ```c int isPrime(int num) { // 判断一个数是否为素数 if (num <= 1) return 0; // 0和1不是素数 for (int i = 2; i <= sqrt(num); i++) { if (num % i == 0) return 0; } return 1; } ``` 然后,我们可以按照题目要求从n到m逐个判断每个整数是否为素数,并累加素数的个数。具体实现代码如下: ```c int countPrimes(int n, int m) { // 计算[n,m]区间内素数个数 int count = 0; for (int i = n; i <= m; i++) { if (isPrime(i)) count++; } return count; } ``` 最后,在主函数中调用countPrimes函数,输入n和m,输出素数个数即可。具体实现代码如下: ```c #include <stdio.h> #include <math.h> int isPrime(int num); int countPrimes(int n, int m); int main() { int n, m; printf("请输入两个整数n和m,用空格隔开:"); scanf("%d %d", &n, &m); printf("%d到%d之间的素数个数为:%d\n", n, m, countPrimes(n, m)); return 0; } int isPrime(int num) { if (num <= 1) return 0; for (int i = 2; i <= sqrt(num); i++) { if (num % i == 0) return 0; } return 1; } int countPrimes(int n, int m) { int count = 0; for (int i = n; i <= m; i++) { if (isPrime(i)) count++; } return count; } ``` 需要注意的是,在输入完n和m后,程序会计算从n到m之间包括n和m的所有整数,因此在countPrimes函数中,循环的范围应该是从n到m,包括边界。另外,由于素数是大于1的整数,因此在isPrime函数中需要加上判断num是否小于等于1的语句,如果是则直接返回0。 ### 回答3: 题目描述 输入两个正整数n和m(1<=n<=m<=10000),求它们之间的素数个数并输出。 分析思路 本题需要求解n和m之间的素数个数,首先需要明确素数的概念。素数又称质数,是指除了1和它本身以外,没有其它的正约数的整数。例如,2、3、5、7、11等就是素数。下面给出本题的解题思路: 1. 循环遍历n至m之间的每个数,判断每个数是否为素数,使用函数is_prime进行判断。 2. 若该数是素数,则素数个数count加1。 3. 最后输出素数个数count即可。 而判断素数的方法,常见的有两种:试除法和筛法。 这里我们使用试除法。对于一个数x,有以下方法判断其是否为素数: 1. 从2开始,依次试除2、3、4……x-1,如果能被整除,则x不是素数。 2. 若从2至x-1都不能整除x,则x是素数。 代码实现 根据上述思路,可以编写如下代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值