此次任务参考了以下大佬的博客,链接:
haar小波:
https://blog.csdn.net/baidu_27643275/article/details/84826773
【小波变换】小波变换python实现–PyWavelets:
https://blog.csdn.net/baidu_27643275/article/details/85058074?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
python代码:
import numpy as np
import pywt
import cv2
import matplotlib.pyplot as plt
img = cv2.imread("C:\\Users\\ASUS\\Desktop\\beautiful gril.jpg")
img = cv2.resize(img, (448, 448))
# 将多通道图像变为单通道图像
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype(np.float32)
plt.figure('二维小波一级变换')
coeffs = pywt.dwt2(img, 'haar')
cA, (cH, cV, cD) = coeffs
# 将各个子图进行拼接,最后得到一张图
AH = np.concatenate([cA, cH], axis=1)
VD = np.concatenate([cV, cD], axis=1)
img = np.concatenate([AH, VD], axis=0)
# 显示为灰度图
plt.imshow(img,'gray')
plt.title('result')
plt.show()
自己查了一些资料:
cv2.imread()接口读图像,读进来直接是BGR 格式数据格式在 0~255,需要特别注意的是图片读出来的格式是BGR,不是我们最常见的RGB格式,颜色肯定有区别
cv2.resize()尺寸放缩函数
cv2.cvtColor(p1,p2) 是颜色空间转换函数,p1是需要转换的图片,p2是转换成何种格式。cv2.COLOR_BGR2RGB 将BGR格式转换成RGB格式,cv2.COLOR_BGR2GRAY 将BGR格式转换成灰度图片
pywt.dwt2()二维小波变换(一维和n维类似):单层变换
pywt.dwt2(data, wavelet, mode=‘symmetric’, axes=(-2, -1))
data:输入的数据
wavelet:小波基
mode:默认是对称的
return:(cA, (cH, cV, cD))要注意返回的值,分别为低频分量,水平高频,垂直高频,对角线高频。高频的值包含在一个tuple中。
单通道:例如灰度图,每个像素点只能有一个值表示颜色,它的像素值在0到255之间,0是黑色,255表示白色,中间值是一些不同等级的灰色。
三通道图:每个像素点都有三个值表示,所以就是3通道。
numpy.concatenate((a1, a2, …), axis=0)数组拼接函数,axis=1表示对应行的数组进行拼接,axis=0全部拼接
最终运行结果图:
上述参考的两个链接说的很清楚了。惭愧学过小波变换但是理解的太差了